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The PAL and GAL — An introduction

This paper contains original material plus content | copied from information found on the internet. I've edited
some of the found content to remove unnecessary references; to reformat it and to clean it up a bit. Where
possible I've tried to give credit to the original authors or sources.

I’'m very new to the world of programmable logic; | can’t guarantee the accuracy of the content although I've tried
to make it as accurate as possible.

The intent of the document is to help those who are new to programmable logic come up to speed in the context
of the N8VEM efforts. As the N8VEM boards become more complex we will need to start using programmable
logic to help the designs fit on a single board.

Most likely one or more of the members of the N8VEM work will be able to provide programmed GAL devices to
those who don’t have a GAL programmer. |'ve recently purchased a GAL programmer and will be able to help
provide programmed GALs.

The portions | wrote fall under the Creative Commons NC (Non-Commercial) license. You may reuse it or modify it
as long as the resulting material continues to be free and you list the original source and author. Commercial use is
restricted. | want the material to be useful; reuse is encouraged. If you reuse it please let me know.

Please feel free to send feedback, corrections etc. to me at nbreeden@me.com

Thanks.
Neil B. Breeden Il
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INTRODUCTION

Traditional logic such as the TTL ICs used in most of the N8VEM designs are dedicated to the function they provide.
The 74LS00 has four 2-input AND Gates; the 74LS04 has six inverters (NOT gates).

Some N8VEM boards already use programmable devices such as EPROMs and FLASH memories. Typically these
contain software (firmware) that the microprocessor requires for the system to operate. EPROM and FLASH can
also be used to store look up tables; character sets for video boards and many other things.

The use of GALs will expand the range of boards that can be designed as part of the N8VEM project.

Programmable logic allows you to customize the IC to provide the exact function you need. They can have tens or
hundreds of logic gates in a single IC. By programming the device you customize which gates and combinations of
gates are to be used. It might take 5 regular TTL ICs to create an address decoder; the same functionality can be
defined in a single programmable device. Instead of 5 ICs on the printed circuit board we only need one; this frees
up space one the board for other functionality.



THE 22V10 — A GREAT PLACE TO START

The 22V10 comes in a few different packages. The 24-pin DIP package is the focus of this part of the discussion.

There are 10 potential output pins on pin 14 to 24; this is where the 10 comes from in 22V10. Note that any of
these 10 pins can also function as an input pin.

There are 12 pins that are fixed inputs; pin 1 to 11 and pin 13.

The GAL has 22 total I/O pins; this is where the 22 in 22V10 comes from. The number of input pins is then 22 - 10
=12; there are 12 dedicated input pins.

Each of the I/0 pins (pins 14 to 23) supports a differing number of Product Terms. Think of a Product Term as the
number of overall OR operations the output can support. I've circled in green the number of Product Terms
(PTerm) each particular output supports (From the CYPRESS PALCE22V10 datasheet).

L\ggic Block Diagram (PDIP/CDIP)
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A logic statement that won’t compile on Pin 15 (10 PTerms are supported) certainly won’t compile on Pin 14 (8
PTerms supported) but may compile on Pins 16, 17 or 18.

There are a number of different manufactures making this GAL; after reviewing data sheets for several different

manufactures it must be noted that the programming requirements differ. When programming parts be sensitive
to the manufacturer and to the specific part number.



PALS, GALS, PALASM AND THE DEVICE PROGRAMMER

PALs are one time programmable devices; GALs can be erased and reprogrammed a limited number of
times.

The GAL version of a device is functionally equivalent to the PAL version.

PALASM is a program that inputs the definition of the function to be implemented and outputs a file that
the device programmer can use to ‘program the device’.

PALASM compiles .PDS files; it outputs a .JED file.

The .JED file is the programming definition for a generic type of device. Example: You use PALASM to
compile for a ‘PAL22V10’ device, a .JED file is created. You can then program a ‘GAL22V10’ device using
the JED file from PALASM. The .JED file is the generic programming map for a ‘22V10’ — it doesn’t care if
the device is a PAL22V10 or a GAL22V10.

My programmer is a Wellon VP-390; it allows me to test the GAL after programming it at +/- 10 percent of
VCC. | highly recommend enabling these tests as part of your programming cycle.

The Wellon VP-290 also appears to be a good choice for a general purpose programmer.

If you make the decision to buy a programmer consider buying a higher quality unit. There are many
cheap programmers on eBay; my experience with these has been pretty poor. | would strongly suggest
consulting the N8VEM forums for advice before you commit to a programmer.



PALASM SUPPORTED DEVICES

After reviewing the PALASM help files | believe the following list covers all devices supported in the
version of PALASM linked from the http://www.S100computers.com web site. Please remember that
although you specified a PAL in PALASM you can still program a GAL of the same general device

specification.

PALLOH20EGS PALL6RS PAL22P10
PALLOH20EV8 PALL6RAS PAL22RX8
PALLOH20G8 PALL6RP4PALIGRPE | PAL22V10
PALLOH20P8 PALL6RPS PAL23S8
PALLOH20P8 PAL18L4 PAL24L10
PAL10HS PAL18P8 PAL24R10
PAL10L8 PAL20C1 PAL24R4
PAL12H6 PAL20L10 PAL24R8
PAL12L10 PAL20L2 PAL29M16
PAL12L6 PAL20L8 PAL23MAT6
PAL14H4 PAL20R4 PAL32R16
PAL14L4 PAL20R6 PAL32VX10
PAL14L8 PAL20R8 PAL64R32
PAL16C1 PAL20RA10 PAL6L16
PALL6H2 PAL20RS10 PAL8L14
PAL16L2 PAL20RS4 PALC18U8
PAL16L6 PAL20RSS PALCE16VS
PAL16L6 PAL20510 PALCE16VBHD
PAL16L8 PAL20X10 PALCE20V8
PAL16P8 PAL20X4 PALCE24V10
PAL16R4 PAL20X8 PALCE26V12
PAL16R6 PAL22IP6 PALCE6IO




DEFINING THE LOGIC FOR THE GAL

Being comfortable with the following will go a long way towards helping you define the required logic for your
design.

The AND function (written as *) for a 2 input AND gate defines the outputasY=A *B

Input A | Symbol | Input B Output Y
0 > 0 =10
0 > 1 =10
1 > 0 =10
1 * 1 =1

The OR function (written as +) for a 2 input OR gate defines the outputasY=A +B

A Y
e

Input A | Symbol | Input A Output Y
0 + 0 =10
0 + 1 =1
1 + 0 =1
1 + 1 =1




The NOT function (written as /) defines the output as Y = /A

Symbol | Input A Output Y
/ 0 =1
/ 1 =0

By NOTing the output of the AND and OR gates you get the NAND (Not AND) and NOR (Not OR) gates respectively;
the little circle indicates that the output pin is NOTed.

/Y=A*B /Y=A+B

o ¥ B ¥

B B —

Some examples of how this logic is defined to PALASM follow; note that any text highlighted in
blue are comments:

| want the output Y to be high when all 3 inputs A, B, C are all high:
Y=A*B*C ; Y=A AND B AND C
| want the output Y to be high when inputs A, C are high and input B is low:
Y=A*/B *C ; Y=A AND [B NOT] AND C
| want the output Y to be high when any of the inputs A, B, C, D are high:
Y=A+B+C+D ; Y=AORBORCORD
| want the output Y to be high when inputs A OR B are high or CAND D are low:
Y=(CA+B) + (/C * /D) ; Y=A OR B OR ([C NOT] AND [D NOTD)

Notice that we can use parenthesizes to indicate order of operation precedence. Later in this document you will
find a section describing the general order of operation precedence. | prefer to use parenthesizes to clearly
indicate the precedence however this is a personal preference only.



Let’s introduce the XOR (eXclusive OR) function (written as :+:). A 2 input XOR gate defines the outputasY=A:+:B

Lo
B—

Input B | Symbol Input A Output Y

0 T+ 0 0

0 I+: 1 1

1 It 0 1

1 o 1 0 <- this is where it differs from the OR function




As an example | want the output (Y) to be high when (inputs A, B are both low) or (either input C, D are low but not
both low (XOR)) or (input E, F, G are all high):

Y

(/A * /B) + (C :+: D) + (E * F * G)

Y

([A NOT] AND [B NOT]) OR (C XOR D) OR (E AND F AND G)

If | wanted Y to be low (instead of high) using the logic above you would simply NOT Y as follows:
/Y = (/A * /B) + (C :+: D) + (E * F * G)

:[Y NOT] = ([A NOT] AND [B NOT]) OR (C XOR D) OR (E AND F AND G)

READING THE EQUATIONS

Practicing reading the equations out loud will help you learn the logic and how to read them; for example:

The equation AND_Out = A ln * B In
Is read as:

The output AND OuT isdefinedasinput A In AND inputB In
The equation AND Out = A In + B In
Is read as:

The output AND OUT isdefinedasinput A In OR inputB 1IN

Practice reading the remaining equatons.

XOR_ Out = A_IN :+: B_In - Pin 18 = Pin 1 XOR Pin 2
ANOT _Out = /A : Pin 20 = NOT Pin 1
BNOT Out = /B : Pin 22 = NOT Pin 2



LET’S LOOK AN EXAMPLE PDS FILE.

The text in J€€En is the contents of the file; the text in b lU€ describes the contents and is not part of the
actual PDS file.

Standard header entries:

TITLE Simple logic statements
PATTERN TEST1.PDS

REVISION O

AUTHOR Neil Breeden

COMPANY  N8VEM

DATE 05/30/14

Device Definition:

CHIP TEST_GAL PAL22V10 ; Defines a generic 22V10

The device pins are given names, this helps make the logic definitions easier to read. Further it provides
documentation to help explain the design:

B PIN Declarations ----——————————-
PIN 1 A _In > A Input

PIN 2 B_In ; B Input

PIN 14 AND_Out ; Output to demonstrate AND
PIN 15 OR_Out ; Output to demonstrate OR
PIN 16 XOR_Out ; Output to Demonstrate XOR
PIN 17 ANOT_Out ; Output to demonstrate A NOT
PIN 18 BNOT_Out ; Output to demonstrate B NOT

The actual logic equations, this is where we define how the GAL will be configured to perform the work we need

done.

EQUATIONS ;---—--———- Boolean Equation Segment ---————-—--—-
AND Out = A_In * B_In ; Pin 14 = Pin 1 AND Pin 2
OR_Out =AIn + B In ; Pin 16 = Pin 1 OR Pin 2



XOR_Out

ANOT Out =
BNOT_Out =
SIMULATION
TRACE_ON
SETF

SETF

SETF

SETF

SETF
TRACE_OFF

A IN z+: B In

: Pin 18 = Pin 1 XOR Pin 2
: Pin 20 = NOT Pin 1
; Pin 22 = NOT Pin 2

A In B_In AND Out OR Out XOR Out ANOT Out BNOT Out

/A In

/B _1In
/A _IN /B_IN
/A _IN B_IN
A_IN /B_IN
A_IN B_IN
/A _IN /B_IN

End of the .PDS file.

; 00
; 01

10
11
00

Based on the design | would expect the simulation output to look as follows.

A In

B In

AND Out
OR_Out
XOR_Out
ANOT_Out
BNOT_Out

99999
LLHHL

LHLHL
LLLHL
LHHHL
LHHLL
HHLLH
HLHLH

Each column with ‘0’ as a header indicates the state of the pins for one SETF in the simulation data. There are

five SETFs so there are five ‘0’ columns.

In the first SETF we set both A_In and B_In low; As both are low both the AND, OR and XOR outputs are low. The
two NOTed outputs are both high as they are the NOTed values of the inputs.

The next SETF sets B_In high. The AND output remains low; the OR and XOR outputs are now high; the BNOT
output is now low.



Can you explain the remaining columns results?

On pin 19 add a NOR PTerm along with the simulation data.
Add a more complex PTerm such as Y =((A * B) + (C* D) * E)
What would the simulation data look like?

What would the simulation output look like?



SOME BEST PRACTICES, NOTES, RAMBLINGS AND COMMENTS....

Different manufactures of the same device type can have very different programming requirements. | damaged 4
Lattice parts when | programmed them using the definition for a NS device. The Lattice part wanted 9 volts for
VPP; the NS part wanted 14 volts for VPP. This is also true for EPROMS, FLASH etc. An Intel 2764 has a different
programming configuration then an Intel 27C64. VPP refers to the programming voltage applied to the device to
erase or program it.

An erased GAL has all PTerms functionality enabled; this will result in all of the output pins always being high; keep
this in mind.

When erased the output is basically defined as “Output = (A * B) + (/A * B) + (A * /B) etc....”, this results in the
output always being true (high). By programming you disable the unneeded terms.

| was confused several times thinking my design wasn’t working when in reality the GAL was erased due to the fact
that the software my VP-390 uses clears the data buffer each time the GAL type is changed; this includes changing
the manufacture for the same type of GAL. With the buffer cleared a programming pass will leave the device
erased. You may need to reload the .JED file after changing devices.

Using LEDs, a breadboard and jumper wires you can build a test rig to allow you to do a basic verify test to see if
the programmed device works as expected. This is HIGHLY recommended as trying to debug a design in circuit is
very difficult.

Don’t be afraid to fail; you may destroy a few parts; your designs may not work initially or they may not represent
what you were trying to do. This is OK, you should stay with it and try to understand why it failed; this is where the
BEST learning comes from.

Reach out and ask for help when needed. This is why we have the N8VEM forums. For me there are times when
the act of typing the question; of trying to explain the problem will suddenly give me insight that allows me to fix it
or to try something different.

Keep notes; keep notes; be sure to keep notes. | keep detailed notes as | work on a design; when | solder up a
board; when | write code etc. | go so far as to scan 200dpi and 600dpi images of both side of the blank PCB before |
begin to assemble it. Again, get in the practice of keeping notes.

Review the forums first. I'm guilty of not always doing this; it is however a practice I'm working on getting into.
Share your experiences, share your successes, and share your failures. As a community we learn together.



MY TESTING RIG FOR 22V10 GALS

The GAL under test is on the left side of the breadboard.
The DIP switches are for pins 1 to 24; the extra 6 on the right end are not used.

The LEDs represent pins 1 to 24; again the last 6 are unused.
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This design includes buffer LED drivers; current limiting resistors for the LEDs and pull-up resistors for the DIP

switches.



TYPICAL 22V10S AND THE GENERIC GAL 22V10 PINOUT:

w1~ 240 vee
i [ o
1 0 vora
1] GAL [Jvor
1] 22V10 [Jvor
1ge [l vora
10 18] vor
g [ vora
10 [ vora
1] [ vora
i [ vora

GND [] 12 13[11




RESOURCES

$100 Computers discussion of GALs
Includes instructions on downloading PALASM and getting it to run:

http://www.s100computers.com/My%20System%20Pages/ISA%20t0%205S100%20Bus/Intro%20T0%20GA
Ls.htm

Examples of various logic implementations:

http://orion.ipt.pt/~fmbarros/ed/palasmex.pdf

A lot of good reviews and insights into good tools along with a lot of good material on electronics:

www.eevblog.com

Videos lectures on electronics and GALs:

http://www.allaboutcircuits.com/videos/index.html
http://www.allaboutcircuits.com/videos/89.html

Interesting information - the preview doesn’t show all pages but there is a lot of interesting material presented:

An interesting book on Google Books

Other links:

http://mazsola.iit.uni-miskolc.hu/cae/docs/theor00.html

http://ee.sharif.edu/~logic circuits t/readings/PLD.pdf

http://sourceforge.net/projects/logiccircuitd/?source=directory




THE DESIGN CYCLE

Plan, Document, Execute, Document, Test, Document — repeat as required.

1. Define the requirements — what is the problem to be solved?
a. Document it —if you can’t clearly and completely describe it then you are not ready to move to
the next step.
2. Decide how you want to solve it; in this example | am assuming you will be using a PLD.
a. Document the pro’s and con’s to the various approaches you consider.
3. Define the inputs and outputs for the projects.
a. Document it —if you can’t clearly and completely describe them then you are not ready to move
to the next step.
4. You should be able to define a simulation data set for PALASM; if you can’t then you most likely don’t
understand your design sufficiently to test the programmed part.
a. Documentit.
Create or update the PALASM PDS file.
Using PALASM compile the PSD file; fix any bugs and compile again until you get a clean compile.
Simulate the design in PASASM); repeat steps 5 thru 7 until the simulation is successful.
Program a GAL using the JED file produced by PALASM.
a. Besure to select the correct manufacture and device in the programming software.

© N,

b. Be suretoload/ reload the .JED file as required; changing the device or manufacturer of a device
will require you to reload the JED file.
9. Test the design on a breadboard; repeat steps 5 thru 9 until it works on the breadboard.
10. Make a backup copy the PDS file. Rename it to include the time and date.
a. You may end up with multiple copies; | believe it’s safest to keep them all as you can revert back
to an older one if needed.
11. Test in the application, repeat steps 5 thru 11 until it works in the application.



All content below this point was copied from resources found on the internet.

PROGRAMMABLE LOGIC DEVICES

Programmable Logic Devices (PLDs) (also known as PALs) are popular devices for implementing
digital designs. These devices can be used where earlier systems used TTL or CMOS logic ICs.
The PLDASM is a tool that allows Boolean equations to be programmed into a PLD in order to
perform a user-defined logic function. Boolean equations make it possible to describe a
function in an efficient manner, and this assures that the designer achieves the most compact
solution with the fastest propagation delays. Furthermore, with Boolean equations the PLD can
function as an address decoder, state machine or counter, and perform any number of other
tasks ranging from the simple to the complex. While initially PLDs provided a savings in the
amount of space used on a PC board, recent high speed PLDs are often significantly faster than
the equivalent circuit implemented in TTL logic. Another recent development in PLDs is the
complexity of the macrocells used for I/0. PLDASM automatically configures these macrocells,
according to a set of simple rules which apply to all the PLDs supported by PLDASM. This allows
substitution of one device for another, and reduces the amount of time required to 'learn’ a
new PLD.

A PLDs internal structure is built as an AND/OR matrix. A programmable input AND array can
generate any AND function of all device inputs (with or without inversion). These AND functions
are called 'Product Terms'. Product terms feed a multiple input OR gate. Since the AND/OR
matrix can express any Boolean transfer function, the flexibility and functionality of a PLD is
limited only by the number of terms available in the AND - OR arrays. PLD devices are available
in different sizes, some with over 40 inputs, and some with up to 19 Product Terms per output.
The outputs range from simple tri-state drivers to complex registered macrocells with
programmable inverters.



BOOLEAN FUNCTIONS

In an un-programmed PLD, all fuses are intact. In other words, every input line is '"ANDed" with
all other input lines (including any feedback terms available in the device) The output of these
AND functions is fed into an OR gate and is then either fed onto more complex functions or
presented directly on the output pins of the device.

For example, let us assume that we have a simple PLD with two input terms (A and B) and two
output terms (X and Y). Internally, the device also makes the inverse of the input terms
available (/A and /B). In the un-programmed state, the logical function of the device can be
represented by the following Boolean equations.

X
Y

A*B + /A*/B + A*/B + /A*B
A*B + /A*/B + A*/B + /A*B

In this state clearly the device has little use; X and Y are always equal to 1, regardless of the
inputs A and B. However, when some of the terms in each of the AND functions are removed,
the power of the device becomes obvious. For example, let us assume that the following fuses
are 'blown":

From X, /A*/B, A*/B
From Y, A*B, /A*/B, /A*B

In the example given, the fuses were 'blown' so that no connection remained. The equations
that remain after programming of the device are shown below.

X
Y

A*B + /A*B
A*/B

As can be seen, very quickly it becomes possible to provide complicated logic functions in a
single package. The other main advantage of PLDs is that their precise function can be adapted
by the individual designer to meet the application needs, even if the design specification
changes after PC boards have been built, (or if bugs are found during system testing and
production).



The above equations are usually entered into a disk file using a text editor or the editor built
into PALASM. The disk file is passed through PALASM to create a JEDEC file. The JEDEC file can
then be loaded into the PAL program for programming a device.

In order to program a PLD, it is necessary to address each fuse in the device individually and to
program it. PALASM compiles the equations in the .PLS file into a fuse file formatted as JEDEC
data; this file has a .JED extension.

For each input signal, there are two input line numbers, one for the actual input signal and one
for its inverse. So, for this device there will be four input lines (1=A,2=/A,3 =8B, 4=/B).

Additionally, there will be eight product line numbers as there were eight OR combinations in
the un-programmed device (4 for each output term). Therefore, for this device, the fuse map
needed by the programming utility to create the Boolean functions described is shown below.

Input Line
A|/A|B |/B
Product Line Number 1 2 3 4 | Output
1 X | -1 X| -
2 - | X[ X ] - X
3 - - - -
4 - - - -
5 X | - - | X
6 - - - - Y
7 - - - -
8 - - - -

The fuse map is stored in a JEDEC file where each fuse location represented by an 'X' is stored
as a '0' (zero) and will be unaffected by the programming utility. Each location represented by a
'-'is stored as a '1' and will be blown by the programming utility.



An example JEDEC file:

PALASM4 PAL ASSEMBLER - MARKET RELEASE 1.5a (8-20-92)
(C) - COPYRIGHT ADVANCED MICRO DEVICES INC., 1992

TITLE :Simple logic example AUTHOR :Neil Breeden
PATTERN :-TEST1.PDS COMPANY :N8VEM
REVISION:O DATE :05/30/14

PAL22V10

TEST_GAL*

QP24*

QF5828*

GO*FO*

L0000 00000000000000000000000000000000000000000000*
L0044 00000000000000000000000000000000000000000000*
L0088 00000000000000000000000000000000000000000000*

L2904 111111121112111211121111111111111111111111111111*

L5720 00000000000000000000000000000000000000000000*
L5764 00000000000000000000000000000000000000000000*
L5808 01010101011111110111*

C3D10*

16BO
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DESIGN WITH BOOLEAN EQUATIONS

A .PDS file using Boolean equations to specify a design consists of two or three sections: declarations, equations,
and optional simulation specifications. The declaration section is used to identify the design, list target device data,
and define string constants. The equation section defines the outputs in terms of inputs and feedback paths. It also
supports device-specific configuration.

The vocabulary of .PDS files is given separately. The grammar and syntax for .PDS files with
Boolean equations is also given separately. General comments about grammar and syntax issues
follow.

Note that the first several lines of the grammar (TITLE, PATTERN, ..., DATE) are all optional.
If the optional lines are omitted, warning messages will be generated. The information following
these optional lines is limited to 24 characters.

The reserved word CHIP is required. The description is limited to 13 alphanumeric characters.
The device name must designate a device supported by the software. The on-line databook (in
PALASM?2) shows which devices are supported. The names of the pins as they are used in the
program follow. Traditional style dictates that the pin numbers be placed by the names using
comment lines.

Some PLDs have internal global preset or reset lines which affect all the registers in the device.
If the device being programmed has this feature (e.g., PAL22V10s), PALASM requires the
definition of a phantom pin at the end of the pin definitions. For a 24 pin device, the phantom pin
would be defined as a 25th pin. Typical names for the pin are global.rst or global.set which can
then be used in the equations section, if desired. Omitting a phantom pin results in the warning
"Not enough pins defined".

The STRING section is optional. It permits frequently used patterns to be replaced by a name.
For example, a four-literal expression for the numeric value three could be declared as "ONE /13
* /12 * 11 * 10", Strings can contain other strings, but the references must not be recursive.

The section starting with the reserved word EQUATIONS is required. What follows is a set of
Boolean equations which define the functions implemented by the PLD. The results can be
combinational (designated with "="), synchronously registered (designated with ":="), or
asynchronously latched (designated with "*="). The equations can span more than one line, but
no single line may span more than 128 columns.



The permitted operations are the standard Boolean operators with normal precedence: NOT ("/"),
AND ("*"), OR ("+"), and XOR (":+:"). Parentheses may be used to group terms.

The output can also be specified as being asserted low or asserted high. Outputs which are to be
asserted low are preceded by a slash. For example, /Q2 =12 + /I1 + 10 would be low when 12=1,
[1=0, and 10=1. It would be high otherwise.

DESIGN WITH STATE MACHINES

PALASM allows state machine circuits to be descibed as either Mealy machines (outputs depend on both current
state and current inputs) or as Moore machines (outputs depend on just the current state). The specific syntax and
semantics for .PDS files with state machine design is given separately. Specific comments about the syntax and
semantics follow.

The declaration section follows the same rules as for a Boolean equation design.

The type of state machine to be implemented is specified by using the reserved word
MEALY MACHINE or MOORE MACHINE.

The global defaults provide a concise way of specifying circuit behavior for cases not explicitely

defined in later parts of the design specification. Default state transitions can be specified in one
of three ways:

DEFAULT_BRANCH <state name>
DEFAULT_BRANCH HOLD_STATE

DEFAULT_BRANCH NEXT_STATE

The first defaults to the specified state, the second to the same state, and the third to the next
state appearing in the design description.

Default outputs can also be specified as shown below.

OUTPUT_HOLD <output pin list>

DEFAULT _OUTPUT <output pin values>



In the first case, the list specifies output pins which do not change. In the second case, the output
pins go to the specified values. The character '%' preceding a pin name in a pin list denotes a
"don't care" output while a /' preceding a pin name indicates a low output value.

The optional state assignment section equates state names with a unique set of state variable
values. The variable values are stored in registers. The syntax of state assignments is

<state name> = <varlval> * <var2val> * _... * <varNval>

The character '/' precedes variables which are low. State names must be unique and may contain
up to 14 characters. By assigning your states values, you may get a better design than by
allowing Palasm to do the assignment for you.

The state equations define the state transitions of the state machine. The syntax of each state
equation is

<current state name> := <conditionl> -> <next state 1>

+ <condition2> -> <next state 2>

+ <conditionN> -> <next state N>
+-> <local default state>

The current state and next state names are those defined in the state assignment section. The
conditions are defined in the condition section. The local default state line is optional. When
present, the local default state overrides any global default state definition. When absent, the
global default is used. An unconditional state transition should use the reserved word VCC as the
condition.

An output equation for each state equation is required if OUTPUT HOLD (in PLS and PROSE
designs) or DEFAULT OUTPUT is specified in the design. Otherwise, the output equations are
optional. If the outputs are the same as the state, do not specify output equations. Registered
Mealy outputs take on new values one clock cycle after a new state is reached. All others are
valid when the new state is reached. For Mealy machines, the output syntax is

<state name>.OUTF <OP> <conditionl> -> <output list 1>
+ <condition2> -> <output list 2>

+ <conditionN> -> <output list N>
+-> <local output defaults>



For Moore machines, the syntax is

<state name>.OUTF <OP> <output list>

where <OP> is again either := for registered outputs or = for combinational outputs. The syntax
of the output list is

<pin label> * <pin label> * ... * <pin label>

where the number of labels in the list is one or more.

The condition section is used to define unique input value combinations. These conditions are
then used in the state transition section. The condition section begins with the reserved word
CONDITIONS and is followed by a list of definitions with the following syntax:

<condition name> = <input Boolean expression>

The condition name can contain up to 14 characters and must be unique. The input Boolean
expression must use input names as defined in the pin list or string section and it must be unique.
Conditions involving only one input do not need to be explicitely defined. Care should be taken
to define conditions so that only one is true at any given time.

SIMULATION

PALASM provides an event-driven simulator for PLD design. The simulation is specified as an optional part of the
.PDS design file. It begins with the reserved word SIMULATION and is followed by simulation commands. The
results of the simulation are stored in two files: the .HST file which contains a complete history of the simulation
and the .TRF file which contains a trace of signals specified by the TRACE_ON command.

The next section covers the syntax and meaning of the simulation commands as well as the
interpretation of simulation results. A brief simulation command summary is also available.

SIMULATION COMMANDS

The simulation commands can be divided into three categories: value, control, and verification.

VALUE SIMULATION COMMANDS

The value commands set simulation values. The general syntax is



COMMAND <List of pin names and values>

The list of pin names consists of the name of one or more pins, possibly qualified by the /'
character. Names are separated by blank spaces. The '/ indicates the signal is low or
complemented. Its absence indicates the signal is high or un-complemented. A '/' in the pin list
will complement a /' in the CHIP declaration section.

The PRLDF command is used to initialize the values of registers which can be loaded with a
value at power-up (preloaded). For example, let P1, P2, and P3 be the output pins associated with
registers which are to be preloaded with 1, 0, and 1, respectively. This would be stated in the
simulation as

PRLDF P1 /P2 P3

If the device cannot be preloaded, the command simply initializes the registers. The Xeltek
programmer in the EE department does not support preloading.

The SETF command specifies input signal values. For example, let 11, 12, and I3 be pins
associated with input signals which are to be set to 0, 1, and 1, respectively. This would be stated
in the simulation as

SETF /11 12 13

The inputs will retain the values until explicitly changed. Until a value is specified, input values
default to 'undefined'. SETF can be used with clock input pins.

The CLOCKF command generates a clock pulse signal on the specified clock input pins. The
pulse goes low-high-low. For example, consider the clock signal CLKO. It would be pulsed by

CLOCKF CLKO

CONTROL SIMULATION COMMANDS

The control commands permit repetitive and selective execution of commands based on condition evaluation. The
conditions for the WHILE and IF commands make use of the relational operators<, >, =, <=, and >=. The conditional
expressions may not contain nested parentheses.

The syntax of the FOR command is

FOR <index var> := <start> TO <end> DO
BEGIN



<command list>
END

An example of the FOR command follows:

FOR J:z=1 TO 8 DO
BEGIN
SETF /10 11
CLOCKF CLKO
END

FOR loops may be nested. The value of <start> must be less than that of <end> and both must be
non-negative. If the limits are equal, the loop is NOT executed.

The syntax of the WHILE command is

WHILE <condition> DO
BEGIN
<command list>
END

An example WHILE statement:

WHILE (J <= 7) DO
BEGIN
SETF 10 11
CLOCKF CLK1
J:=J+1
END

WHILE loops may be nested. The <condition> may be either a numeric comparison or Boolean
evaluation.

The syntax of the IF.. THEN...ELSE command is

IF <condition> THEN



BEGIN
<command list>
END
ELSE
BEGIN
<command list>
END

An example of an IF ... THEN ... ELSE command:

IF (/Q0 * Q1) THEN
BEGIN
SETF 10 /11
CHECK Q1 Q2 /Q3
END
ELSE
BEGIN
SETF /10 13
CLOCKF CLK
CHECK /Q1 /Q2 /Q3
END

The ELSE part is optional. As with the WHILE command, the <condition> may be either a
numeric comparison or Boolean evaluation

VERIFICATION SIMULATION COMMANDS

The verification commands allow the correctness of the design to be checked.

The TRACE _ON command commences the writing of specified signal values to the .TRF trace
file. The syntax of the command is

TRACE_ON <list of pin names>

The signal values will be put in the file in the order they occur in the pin list and with the same
polarity. The values will be recorded in the file until a TRACE_OFF command is encountered or



the simulation ends. TRACE_OFF has no arguments. Different signals can be traced by
specifying them in a TRACE ON command which follows a TRACE OFF.

The CHECK command compares simulation values with expected values. The syntax of the
command is

CHECK <list of pin names and values>

The list of pin names consists of the name of one or more pins, possibly qualified by the /'
character. Names are separated by blank spaces. The '/ indicates the signal is low or
complemented. Its absence indicates the signal is high or un-complemented.

For example, suppose that at a given point in a simulation, the pins P1, P2, and P3 are to have the
values 0, 1, and 0, respectively. This would be specified as

CHECK /P1 P2 /P3



As with the pin list, a '/' in the pin list will complement a /' in the CHIP declaration section. The
following table shows the relationship between pin declarations in the CHIP section and pin
names in the CHECK command.

Pin Names used in CHECK

Definition in CHIP

Test Level P1 /P1
High P1 /P1
Low /P1 P1

Form in CHECK Name List

WRITING SIMULATIONS

General flow: set registers, set input signals

INTERPRETING SIMULATION RESULTS

oscillatory conditions

differences between expected and simulation results



.PDS FILE VOCABULARY

CHARACTERS

LEGAL

Upper and lower case alphanumeric, space, tab, underscore

ILLEGAL
C-re#sure-{}[1"2<>

LINES

Maximum of 128 characters per line
RESERVED WORDS

AUTHOR

BEGIN

CHECK

CHIP

CLKF

CLOCKF

CMBF

COMPANY
CONDITIONS
DATE
DEFAULT_BRANCH
DEFAULT_OUTPUT
DO

ELSE

END

EQUATIONS

FOR

GND
HOLD_STATE

IF
MASTER_RESET
MEALY_MACHINE
MOORE_MACHINE
NC

NEXT_STATE

OR
OUTPUT_ENABLE
OUTPUT_HOLD



PATTERN
POWER_UP
PRLDF

R

REVISION
RSTF

S

SETF
SIMULATION
STATE
STRING
THEN

TITLE
TRACE_OFF
TRACE_ON
TRST

vCC

WHILE

SPECIAL SYMBOLS

(Single quotes) Delimit strings

, Pin list separator (comma)

O Enclose pins in logic expressions

Precede comments, which run to end of line

/ NOT or active-low
* AND
+ OR
z+: XOR

= Combinational output
*= Latched output
i= Registered output



OPERATOR PRECEDENCE

/ * + -+: for NOT, AND, OR, and EXCLUSIVE OR, respectively

STATE MACHINE SYMBOLS

-> State transition (go to state ...)
+-> Local default state transition (otherwise, go to state ...)
% Don*t care value for output (used like */%)



BOOLEAN DESIGN GRAMMAR

TITLE <Design title>

PATTERN <ldentification such as file name>
REVISION <Version or other ID>

AUTHOR <Name of designer>

COMPANY <Organization name>

DATE <Relevant date>

CHIP <Description> <Device name>

; <Pin numbers, eg 1 2 3 4 5 6 7 8>
<pin names, eg Clk CIr Pre 11 12 13 14 GND>

; <Pin numbers, eg 9 10 11 12 13 14 15 16>
<pin names, eg NC NC Q1 Q2 Q3 Q4 NC Vcc>

STRING <Name> “<Characters to substitute>"
<more string definitions>

EQUATIONS

<combinatorial equations of the form
OutName = Namel Opl Name2 .... OpN NameM>

<registered equations of the form
OutName := Namel Opl Name2 .... OpN NameM>

<latched equations of the form
OutName *= Namel Opl Name2 .... OpN NameM>

NOTE: <text> designates text which is supplied by the designer.



STATE MACHINE DESIGN GRAMMAR

TITLE <Design title>

PATTERN <ldentification such as file name>
REVISION <Version or other ID>

AUTHOR <Name of designer>

COMPANY <Organization name>

DATE <Relevant date>

CHIP <Description> <Device name>

; <Pin numbers, eg 1 2 3 4 5 6 7 8>
<pin names, eg Clk CIr Pre 11 12 13 14 GND>

; <Pin numbers, eg 9 10 11 12 13 14 15 16 phantom>
<pin names, eg NC NC Q1 Q2 Q3 Q4 NC Vcc global>

STRING <Name> “<Characters to substitute>"
<more string definitions>

STATE
<kind of state machine>

<global defaults for when behavior is not defined
by the state equations>

<state assignment definitions>
<state transition and output definitions>

CONDITIONS

<Name> = <Boolean equations specifying condition>

NOTE: <text> designates text which is supplied by the designer.



SIMULATION COMMANDS SUMMARY

VALUE COMMANDS

PRLDF Initialize preloadable register outputs
SETF Specify input values

CLOCKF Generate clock signal for clock input

CONTROL COMMANDS

FOR...TO...DO
WHILE. . .DO

IF...THEN...ELSE

The syntax and use of these three commands is comparable to computer languages like
BASIC, Modula-2, etc.

VERIFICATION COMMANDS

CHECK Compare expected and simulated signal values
TRACE_ON Specifies signals for .TRF file and recording interval

TRACE_OFF

Copyright © 1991, 1996 NDSU EE Dept.

Content copied from http://orion.ipt.pt/~fmbarros/ed/PALASM%20Language%20Guide.htm#Top




= CVPRESS PALC22V10D

e
Flash Erasable,
Reprogrammable CMOS PAL® Device
Features e DIP, LCC, and PLCC available — Proven Flash EPROM technology
e Advanced second-gencration PAL ar- — 7.5 ns commercial version — 100% programming and functional
chitecture : : :CO testing
® Low power 5
jal 75 ns tpp Functional Description
_ :;‘m‘m mﬂ;’;‘) ) 133-MHz state machine The Cypress PALC22V10D is a CMOS
i g " =10 ns military and Industrial ver-  Flash Erasable second-generation pro-
® Ciecirical erasabiliy and reprogeaan: o™ grammable array logic device. It is im-
mabllity : ns ‘S'CO plemented with the familiar sum-of-pro-
ns ducts (AND-OR) logic structure and th
* Varisble product terms 10 ns tpp progra(mmnblc acoocell ¢
—32(0 Sengh S0 predect 110-MHz state machine The PALC22V10D is executed in 2 24-pin
* User-programmable macrocell — 15-ns commercial and mKATY 300w moided DIP, & 300-mil cerDIP &
— Output polarity contrel versions 28-lead square ceramic leadless chip carri-
tered or combinatorial operation versions ricr, and provides up to 22 inputs and 10
¢ Up to 22 input terms and 10 outputs « High reliability outputs. The 22V10D can be electrically
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PALC22V10D

Functional Description (continued)

crasedand reprogrammed. The programmable macrocell provides
the capability of defining the architecture of each output individu-
ally. Each of the 10 potential outputs may be specified as “regis-
tered” or “combinatorial.” Polarity of each output may also be in-
dividually selected, allowing complete flexibility of output
configuration. Further configurability is provided through “array”
configurable “output enable” for each potential output. This fea-
ture allows the 10 outputs to be reconfigured as inputs on an indi-
vidual basis, or alternately used as a combination /O controlled by
the programmable array.

PALC22V10D features a variable product term architecture,
There are 5 pairs of product term sums beginning at 8 product
terms per output and incrementing by 2 to 16 product terms per
output. By providing this variable structure, the PALC22V10D is
optimized to the configurations found in a majority of applications
without creating devices that burden the product term structures
with unusable product terms and lower performance.

Additional features of the Cvpress PALC22V10D include a syn-

10 potential outputs are enabled using product terms, Any output pin
may be permanently selected as an output or arbitrarily enabled asan
output and an input through the selective use of individual product
terms associated with each output. Each of these outputs is achieved
through anindividual programmable macrocell. These macrocellsare
programmable to provide a combinatorial or registered inverting or
non-inverting output. Ina registered mode of operation, the output of
the register is fed back into the array, providing current status infor-
mation to the array. This information is available for establishing the
next result in applications such as control state machines. In a combi-
natorial configuration, the combinatorial outputor, if the output is dis-
abled, the signal present on the 'O pin is made available to the array.
The flexibility provided by both programmable product term control
of the outputs and vanable product terms allows a significant gain in
functional density through the use of programmable logic.

Along with this increase in functional density. the Cypress
PALC22VIUD provides lower-power operation through the use of
CMOS technology, and increased testability with Flash repro-
grammability.

chronous preset and an asynchronous reset product term, These Configuration Table
product terms arec common to all macrocells, eliminating the need Registered/Combinatorial
todedicate standard product termsfor initialization functions. The - - - -
device automatically resets upon power-up. G Co Configuration
The PALC22V10D. featuring programmable macrocellsandvanable 0 0 Registered/Active LOW
product terms, provides adevice with the flexibility to implement logic 0 1 Registered/ Active HIGH
functions in the 500- to 8K)-gate-array complewty. Since each of the _'"gl .cm - == - -
10 output pins may be individually configured as inputs on a tempo- I 0 Combinatorial/Active LOW
rary or pecrmanent basis, functions requiring up to 21 inputs and only 1 i Combinatonial/Active HIGH
asingle output and down to 12 inputs and 1toutputs are possible. The
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LC22V1
%&Ypmgss _ _ PALC22V10D

Maximum Ratings
(Above which the uscful life may be impaired. For user guidelines. not tested.)

Storage Temperature .................. —65°Cto +150°C  Static Discha T% Volt‘ag[: . -
Ambient Temperature with (per MIL-STD-883, Method 3015) .............. >2001V
Power Applied ................. e -55°C10 +125°C o .
perating Ran
Supply Voltage o Ground Potential g ge
(Pn24toPinl12) ... -0.5V 1o +7.0V Ambient r
DC Voltage Applied to Outputs Range Temperature Vee
mHighZSate ............... e -5V o +7.0V Commercial 0°Cto +75°C 5V =5%
DC lInput Voltage ........oovuninieiannnn =05V +7.0V Military!'] —55°C to +125°C 5V = 10%
Output Currcn; into Outputs (LOW) .............. 16 mA Industrial —40°C 1o +85°C SV = 10%
DC Programming Voltage .............. e 12.5V
Latch-UpCurrent .. .................cocia =200 mA
Electrical Characteristics Over the Operating Rangel®!
Parameter Description Test Conditions Min. Max. | Unit
Vou Output HIGH Voltage Vee = Min., loy = -32mA | Com’l 24 \Y
Vin = Vigor Vi, -
log = —2mA MilInd
Vor Qutput LOW Voltage Ve = Min,, loL = 16 mA Com’l 0.5 \4
Vin= VigorV
INTVIHOTNIL L = 2mA | Mitind
Vin Input HIGH Level Guaranteed Input Logical HIGH Voltage for Alllnpulsﬁ 2.0 v
AU Input LOW Level Guaranieed Input Logical LOW Voltage for All Inputs!®! -05 08 Ay
Iix Input Leakage Current Vss < Vin < Ve Vee = Max. -10 10 | pA
loz Output Leakage Current Vee = Max,, Vss < Vour < Voo -40 40 HA
Isc Output Short Circuit Current | Ve = Max., Vour = 0.5V =30 90 | mA
Iccy Standby Power Supply Vee = Max, 10, 15,25 ns Com’l %W | mA
Current Vix = GND, ~
Outputs Open in [ 7508 130 | mA
Unprogrammed )5 55 ns Mil/Ind 120 | mA
Device .
10 ns 120 | mA
Iceal®l Opcrating Power Supply Vee = Max. Vi = [ 10,15, 25 ns Com’l 110 | mA
Current OV. Vi = 3V,
Output Open. De- | 7-5 08 140 | mA
vice Programmed as [T 5 Y,
a 10-Bit Counter, 15,25 ns Mil/Ind 130 | mA
f=25MHz 10 ns 130 [ mA
Capacitancel®l
Parameter Description Test Conditions Min. Max, Unit
CiN Input Capacitance Vin=20V@f=1MHz 10 pF
Cout Qutput Capacitance Vour = 20V @ f= 1 MHz 10 pF
Endurance Characteristics!®!
Parameter Description Test Conditions Min. Max. Unit
N Minimum Reprogramming Cycles Normal Programming Conditions 100 Cycles
Notes:
1. Ty is the "instant on™ case temperature. 5. Notmore than onc output should be tesed at a time. Duration of the shont
2. Scc the last page of this specification for Group A subgroup testing in- circuit should £ot be more than one second. Vo = 0.5V has been cho-
formation. sen 10 avosd test problems caused by tester ground degradabon.
3. These arc absolute values with respect 1o device ground. All over- 6. Tested imitially and after any design or process changes that may affect
shoots due 10 system or tester noise are included these parameters.

4. VL (Min.) s equal to = 3.0V for pulsc durations less than 20 ns.



PALC22V10D

AC Test Loads and Waveforms
R12380Q R1238Q
(3190 MIL) (3196 MIL)
VO 5V
ommo—li; OUTPUT :nzwon ouTPUT 7500
< R2170Q P
Iq $ (2360 MIL) IﬁvF $ (2382 MIL) l& i
INCLUDING 1 INCLUDING 1 s L
JGAND < = JIG AND = = = =
SCOPE SCOPE VID-&
(a) (b) (c)
ALL INPUT PULSES
a.ov
20% 20%
10% 10%
GND
=2ns I‘— <2ns
(d) vI00-7
Equivalentto: THEVENIN EQUIVALENT (Commercial) Equivalent to:  THEVENIN EQUIVALENT (Military)
299Q 136Q
OUTPUT O——wA——0 208V = Vg OUTPUT O——amav——0 213V = Vi
vigD-8 vioU9
Load Speed CL Package Parameter | Vy Output Waveform—Measurement Level
75.10,15,25ns | 50 pF PDIP, CDIP, t
PLCC, LCC OHT5 5y Vx  wieoro
ter(s) | 26V _ﬂﬂ'_—rlf— Vx
v"l' V100-11
leags) | OV v 1.5V e Vi
X - V10012
tEa(-) | Vine v
X 05—\%=L VoL veoss
(e) Test Waveforms




CYPRESS

PALC22V10D

Commercial Switching Characteristics (PALC22V10D)12.7)

22V10D-7 22V10D-10 22Vi0D-15
Parameter Description Min. Max. Min. Max. Min. Max. Unit
tpp Input to Output 3 15 3 10 3 15 ns
Propagation Delay!® %
tEA Input to Output 8 10 15 ns
Enable Dclay”ol
tER Input to Output b 10 15 ns
Disable Delay!!!)
tco Clock to Output Delayl® 7] 2 5 2 7 2 8 ns
1} Input or Feedback Set-Up Time 5 6 10 ns
is; Synchronous Preset Set-Up Time 6 7 10 ns
ty Input Hold Time 0 0 0 ns
ip External Clock Period (1co + ts) n 12 20 ns
twi Clock Width HIGHI®! 3 3 ns
twi Clock Width LOWI¢] 3 3 6 ns
favaxt External Maximum ., 100 769 55.5 MHz
Frequency (1(tco + ts)"?!
faiax? Data Path Maximum Frequency 166 142 833 MHz
(1w + twp)I® 3]
fMAX3 Internal Feedback Maximum 133 11 68.9 MHz
Frequency (1i{tcr + ts)I 14l
ICF Register Clock to 25 3 4.5 ns
Feedback Inputl®- 41
taw Asynchronous Reset Width 8 10 15 ns
AR Asynchronous Reset 6 10 ns
Recovery Time
Lap Asynchronous Reset to 12 13 20 ns
Registered Output Delay
1SPR Synchronous Preset 6 8 10 ns
Recovery Time
tpr Power-Up Reset Timel® 1] 1 1 1 us
Notes:
7. Part(a)of AC Test Loads and Waveforms isused for all parameters ex- for enable and disable test waveforms and measurement reference
cepl g g and (g of « ). Part (b)of AC Test Loads and Wivelforms is used levels
for tgg. Part () of AC Test Loads and Waveforms is used for tag+ ). 12, Thisspecification indicates the guaranteed maximum frequency atwhich
8. Min. umes are tested initially and after any design or process changes a state machine configuration with external feedback can operate.
that may affect these parameters. 13. This specification indicates the guaranteed maximum frequency at
9. Thisspecification is guaranteed for all device outputs changingstate in which the device can operate in data path mode.
3 given access cycle. 14. Thisspecification indicales the guaranteed maximum frequency atwhich
10. The test load of part (a) of AC Test Loads and Wavelorms is used for a date machine configuration with internal only feedback can operate.
measuring ‘_I-)'li;t)'- The test load of part () of AC Test Loads and 15, This parameter is calculated from the dock peried at fygax internal
Waveformsis furmcamnngtpal”m'lyl. Please seepart (e)of AC { Ifygaxa) as measured (sec Note 11 above) minus ts.
Test Loads and Waveforms for enable and disable testwaveformsand 14 The registers in the PALC22VI0D have been designed with the capa-

measurement reference levels

. This parameter is measured as the time after output disable input that
the previous oulpul data state remains stable on the output. This delay
s measurcd to the point at which a previous HIGH level has fallen to
05 volts below Vi min. or a previous LOW level has risen to 0.5 valts
ahove Vi, max. Please see pant (e) of AC Test Loads and Wavelorms

bility to reset during system ;mw:r-up. Following power-up, all regs-
terswill be reset toa logic LOW state. The output state will depend on
the polarity of the output bulfer. This feature is useful in establishing
stale machine initialization. Toinsure proper operation, the rise in Ve
musi be monotonic and the timing constraints depicled in Power-Up
Reset Waveform must be sati.«lieg.
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Military and Industrial Switching Characteristics (PALC22V10D)2.7]

22V10D~-10 22V10D-15 22V10D-25
Parameter Description Min. Max. Min. Max. Min. Max. Unit

pD Input 1o Output 3 10 3 15 3 25 ns
Propagation ?)eluy{s- 9

tEA Input to Output Enable Delayl "0l 10 15 25 ns

tER Input to Output Disable Delayl!'l 10 15 25 ns

1co Clock to Output Delay!® 9] 2 7 2 8 2 15 ns

ts) Input or Feedback Set-Up Time 6 10 18 ns

ts2 Synchronous Preset Set-Up Time 7 10 18 ns

ty Input Hold Time 0 0 0 ns

tp External Clock Period (tco + ts) 12 20 1 ns

tWH Clock Width HIGHI®] 3 6 14 ns

Twi Clock Width LOWI®l 3 6 14 ns

fMAX External Maximum Frequency 76.9 50.0 30.3 MHz
(tco + )1

fuaxs Data Path Maximum Frequency 142 833 35.7 MHz
(1i(twy + typ ) 13

fMaxs Internal Feedback Maximum 111 68.9 322 MHz
Frequency (1/(tcF + ts))l% 14)

1CF Register Clock 1o 3 45 13 ns
Feedback Inputl® 151

taw Asynchronous Resct Width 10 15 25 ns

tAR Asynchronous Reset 6 12 25 ns
Recovery Time

tap Asynchronous Reset to 12 20 25 ns
Registered Output Delay

ISPR Synchronous Preset 8 20 25 ns
Recovery Time

PR Power-Up Reset Timel®- 10] 1 1 1 us
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Functional Logic Diagram for PALC22V10D
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PLD DESIGN METHODOLOGY

PLD Design Methodology

e\

Programmable logic devices (PLDs) are used in digital
systemns design for implementing a wide variety of logic
functions. These logic functions range from simple
random logic replacement te complex control
sequencers. Programmable logic devices offer the
multiple advantages of low cost, high integration, ease
of use, and easier design debugging capability not
available in other systems design options. In the
following discussion we will detail the PLD design
process.

Most PLDs have an AND-OR array structure with
programmable connections in either or both of the
arrays. A programmable array implies that the
connections can be programmed by the user. The
popular PAL (Programmable Array Logic) devices have
a programmable AND array and a fixed OR array. PAL
devices are used for a wide variety of combinatorial and
registered logic functions. In this discussion we will also
examine the various design constraints to be
considered when selecting the correct architecture for a
given application.

All digital logic can be efficiently reduced to two
fundamental gates, AND and OR, provided both true
and complement versions of all input signals are
available. Such logic is generally built around what is
known as the sum-of-products (AND-OR) form.
Programmable logic devices are ideal for implementing
such two-stage logic in the AND and OR arrays.

Varicus process technologies offer many design
options for PLDs. The ¢connections in the programmable
arrays can be fuse-based, commonly used in both ECL
and TTL bipolar technologies, E/EEPROM cell based in
UV-EPROM and EEPROM CMOS technologies, and
RAM cell-based in CMOS RAM technology. The
selection of technology is mostly dependent upon the
system speed and power constraints. Most design
engineers are familiar with these constraints, which not
only dictate the technology of PLDs but also all of the
other logic used in a system.

Designing with PLDs involves the use of design
software and a device programmer (Figure 1). The
design software eliminates the need to identify every
connection to be programmed for implementing the
desired sum-of-products logic. The design process
begins with the creation of a design file which specifies
the desired function. The function is typically
represented by its sum-of-products form and can be
derived directly from the timing diagram and/or truth

tables. Occasionally Karnaugh maps and state
diagrams are also used. The design file is then
assembled to produce the “JEDEC” file. The JEDEC file
gets its name from the fact that it is an approved JEDEC
standard for specifying the state of every connaction on
the device. Simulation can then be performed. If the
design is correct, the JEDEC file is downloaded into a
device programmer for programming the connections
on the device. The device can then be plugged into the
PC board where it will function. The entire procedure
can often be performed with the designer never having
to leave the desk. Most programmers interface to
personal computers, so that the design file can be
edited, assembled, simulated, and downloaded, and the
device programmed, all in one place.

———

DESIGN
FLE

1

PLO DESIGN
SOFTWARE

JEDEC
FLE

90002A-1

Figure 1. PLDs are Designed Using Software and a
Device Programmer

The first stage in a PLD design process (Figure 2) is the
conceptualization of a design problem; the second isthe
selection of the correct device; the third is the
implementation of the design, which also includes
simulating the design with test vectors; and finally, the
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actual programming and testing on a system board. Wwe
will take a simple design example and go through the
various stages of this design process.

Conceptualize A
Design Froblem

Select Device

Implement
Design

Program PLD

Test PLD

Plug PLD
Into Board

90002A-2

Figure 2. Programmable Logic Device Design
Process

Conceptualizing a Design

Thefirst step in the PLD design process s alsc required
forany SSI/MSI design. An advantage of PLDs isthat at
this stage the designer needs to be concerned only with
the required logic function. With SSI or MSI, various
device logic limitations must be accounted for before the
design can be started. Clearly a designer needs to
develop a brief and complete functional description,
based upon the system design requirements.

We will take the example of a simple address decoder
circuit required for a 68000 microprocessor. The
microprocessor has 24 address lines along with
separate read and write signals. It requires some ROM
to store the boot-up code as well as some RAM for
storing and executing programs. The purpose of the
address decoder circuitry is to select one of the memary
addresses atatime. The RAMs and ROMs are assigned
addresses on the 68000 microprocessor address
space. The Address decoder circuit has to select one of
the RAMs or ROMSs for a specific range of addresses,
called the address space. This selection Is
accomplished by asserting the specific chip-select
signal for the RAM or ROM when the microprocessor
accesses one of the addresses in the address space,
There is additional circuitry in a typical microprocessor
system for addressing /O devices (such as disk
controllers). These devices also reguire that chip-select
signals be asserted when the micreprocessor
addresses them. Figure 3 shows an example address
map for a 68000 microprocessar

PROM 1 000000-0FFFFF
PROM 2 100000-1FFFFF
DRAM 1 200000-2FFFFF
DRAM 2 300000-3FFFFF
DRAM 3 400000-4FFFFF
DRAM 4 S00000-5FFFFF

G00000-6FFFFF

90002A-3

Figure 3. Memory Address Map

PLD Design Methodology 517
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Top
Reset &|&———™"
Button 4
Bottom
INIT
W Interface ROMCS1 PROM1
RESET ROMCS2 Onl
AS PROM?2 g
AZ1 A22 AZ3 DRAM1
DRAM2
CRAM I Read &
/ Controller Write
M68000 VL) AZ2 AD3 DRAM3
Microprocessor '
DRAM4
D016
80002A-4

Figure 4. Microprocessor to Memory Interface

Figure 4 show the circuit diagram. The address signals
from the 68000 microprocessor are inputs to the
interface logic black. The outputs generated are
ROMCS1, ROMCS2 and RAMCS. The generation of
signals for selecting device I/Cs is similar and is not
shown here for the sake of simplicity. Other system
inputs to the interface are the address sirobe signal
generated by the 68000 microprocessor as well as the
readiwrite signal. The truth table for generating the
outputs is shown in Table 1. This truth table is derived
from the memory address map and the functional
description of the design.

Table 1. Truth Table for Chip-Select Sighals

Addresses Hex | Size | A23| A22 | A21 ] Signal

000000-OFFFFF |1 MB| 0 0 0 | ROMCST
100000-1FFFFF |1 ME| 0 0 1 | ROMCS2
200000-2FFFFF |1 MB| 0 1 0 | RAMCS
300000-3FFFFF |1 MB| 0 1 1 | RAMCS
400000-4FFFFF |1 MB]| 1 0 0 | RAMCS
500000-5FFFFF |1 MB]| 1 0 1 | RAMCS

Device Selection Considerations

The first task for the designer is to identify the design
problem and classify it as a combinatorial function or a
registered function, depending upon whether or not
registers are reguired. In most cases, this decision

depends upon the functional nature of the problem
Scmetimes timing and logic considerations can also
dictate the use of registers; this will be discussed later,
Registers are usually not required for such simple
combinatorial functions such as encoders, decaoders,
multiplexers, demultiplexers, adders, and comparators.
However, registers are required for functions such as
counters, timers, control signal generation, and state
machines. Mo registers are required for this simple
address decoding example.

The best choice for our combinatorial design would be a
PAL device. The task now is to select a PAL device for
implementing the desired function. General device
selection considerations are listed below. These items
are applicable to most designs.

B Number of input pins

B Number of output pins

B Number of VO pins

@ Device speed

B Device power requirements
B Number of registers (if any)
B Number of product terms

B Output polarity control

5-18 PLD Design Methodology



AMD I‘.l

Address Address
Decoding —— Memory Access Time —— Decoding ——
Time Time
10 ns ol 220 ns e 10 ne
240 ns

ReadAVrite Cycle Time

90002A-5

Figure 5. System Timing Requirements

The first resource that must be providedina PLD is the
number of pins needed for the basic logic function. This
consists of the number of input and cutput pins. Many
PLDs have intemnal feedback, which allows the
generated output signal to be reused as an input. The
same feedback also allows the pin to be used as a
dedicated input, if required. This is especially useful for
fitting wvaricus designs with different input/foutput
requirements on the same device, The IO pin capahbility
of certain PLDs can also be very useful for certain bus
applications

The task is as simple as counting the number of input,
outputand I/O pins required by the design and picking a
PLD which has the requisite number of pins.

The next selecticn issue is the device speed. The most
important timing consideration for combinaterial PLDs is
the propagation delay {ten) of signals from the input to
the output of the device. For registered PLDs, the
important timing consideration is the device clocking
frequency. This clocking frequency is in turn determined
by sum of the register setup time (ts), and
clock-to-output propagation delay {tco). Most systems
impose some timing restrictions on the internal logic
functions. These restrictions will determine the
necessary ten (for combinatorial devices) or fmax (for
registered devices).

In our design example, the PLD will primarily perform
address decoding. The critical system timing constraint
is determined by the read/write cycle time of the
microprocessor and the memory access time available
(Figure 5). Most microprocessors allow anywhere from
10to 35 ns for address decoding. That is, 10 ns— 35 ns
after the address is available, the correct memory
chip-select signal should be asserted. In our design
example, the available cycle time of 240 ns and memory
access time of 220 ns leaves barely 10 ns for address
decode time. We can check the propagation delay and
select the appropriate speed device for our design,
which is trp = 10 ns

YWe have already briefly discussed the types of
applications where registers are needed. Sometimes
the consideration of system timing can affect whether or
not registers are needed Devices with registers can

hold a signal stable forthe long durations required by the
addressed peripheral or memory. However, this slows
the initial response or access time of the device since
the chip select must wait for the setup time before the
rising edge of the clock cycle. Devices without registers
provide fast access time but hold the signal valid only as
long as the input conditions are valid. In most address
decoders, the address signals are kept asserted by the
microprocessor until the read/write cycle is completed.
In this case, the registers are not required for helding the
signals asserted.

The remaining twe general design censiderations are
the number of product terms and output polarity. We will
discuss these two as we implement the design in the
next section.

Implementing a Design

Implementing a design (Figure &) requires the creation
of a design file. The design file contains three types of
information.

B Basic bookkeeping information

B Design syntax

B Simulation syntax

Once the design file is complete, it is then assembled
and simulated. Once I passes assembly and
simulation, the resultant JEDEC file 1s downloaded to a
device programmer for configuring the device.

Design Syntax

In this example, as shown in Figure 8, there are two
options available to the desigrer for expressing the
design. The first is through traditional Boolean logic
equations; the second is through a state machine
syntax. The Boolean logic equations are the only option
for combinatorial designs and can alsc be efficient for
some registered designs The Boolean equations can
be derived from a combination of the functicnal
description, the truth table and/or the timing diagrams
(Figure 7). The state machine approach is ideal for large
reqistered control designs, and can be derived from the
functional description, state table, state diagram and/or
the timing diagram {Figure 8).
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| Select Device I

Creat Desigh
File Write
Boolean Logic
Equations

Creat Desigh
File Write
State Machine

Functional
Description

!

!

Truth Table

Timing Diagram

Assemble

Design File

Simulate the Design

Download &
JEDEC File

| Program PLD |

90002A-6

Figure 6. Implementing a Design

!

Logic Equations

Assemble
Design File

90002A-7

Figure 7. Writing Boolean Logic Equations

5-20

PLD Design Methodology



AMD I‘.l

Functional
Description

State Diagram

State Table

Timing Diagram

State Machine File

1

L

Assemble
Design File

90002A-8

Figure 8. $State Machine Description

Boolean Logic Equations

Boolean equations are used to represent the
sum-of-products legic form. The Boclean equations are
ideally suited for representing the two-level AND-OR
lagic available in most PLDs.

A conventicnal approach to the design is to convert the
design problem to its discrete logic implementation.
Such random SSI and MSI logic can be easily
implemented in PLDs. This usually involves converting
to sum-of-products Boolean logic form. This approach
can be a chore, and much effort can be saved by
implementing a design with PLDs in a sum-of-products
form right from the start. This essentially means that the
designer does not have te design around the limitations
of fixed SSI and MSI functions. A direct implementation
of a design in sum-of-products form in a PLD can also
yield a faster circuit,

Beolean equations can be directly derived from the truth
table or timing diagram (Figure 7). The truth table is
used more offen In simple combinatcrial designs. The
timing diagram method is used more often in registered
control designs. Ve will first discuss the truth table
method and then discuss the details of the timing
diagram method.

In addition to specifying the logic function, the Boolean
equaticns in the design file help document the design.
There is no need to draw out an eguivalent schematic.
This allows design modularity; the schematic can just
show a block fer a particular PLD. Separate supporting
documentation (the design file) provides the details
without cluttering the drawing.
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Truth-Table-Based Design

The requirements for our particular design example can
be easily converted to a truth table format (Table 2). This

truth table is based uponthe functional description of the
design, and is derived from the address map (Figure 3)
and the truth table (Table 1).

Table 2. Truth Table for the Address Decoder

Qutput Generated
A23 A22 A21 INIT AS RW ROMCS&1 ROMCS2 RAMCS
0 0 0 1 0 1 0 1 1
9] 0 1 1 o] 1 1 0 1
o] 1 o} 1 6] X 1 1 0
0 1 1 1 o] X 1 1 0
1 o] 0 1 o] X 1 1 0
1 ] 1 1 o] X 1 1 0

There are three additional input signals in this design
example. The first, RW, is generated by the
microprocessor, and distinguishes between read and
write cycles. Since the ROM data is only for reading, the
ROMCS1 and ROMCS?2 signals are asserted only when
RW is high (when the microprocessor attempts to read
the ROM) and are not asserted for the write cycle. On
the other hand, RAMCS is generated for both read and
write cycles and the state of signal RWis "dan't care”

The second additional signal, AS, is the address strobe
signal generated bythe microprocessor, and is asserted
only when the address lines carry a valid address. All of
the chip select sighals need to be gated with the AS
signal to ensure that they are only generated for valid
addresses, and no spurious chip selects are generated.

The last signal is the INIT signal, which is a system
initialization signal. This signal is used to intialize the
microprocessor for a “warm boot,” and none of the chip
selects is allowed when this INIT signal is asserted.

Wiiting Boolean equations from the above logic is very
straight forward. The output signal names, along with
their polarity, are assighed to sum-of-product equations,
which are based upon inputs and their polanties

The equations are derived directly from the truth tables.
Each one of the AND equations uses up one product
term of the device as shown In Figure 9. One device
selection consideration is to ensure that all the outputs
have sufficient product terms to accommodate the
desired function.

This brings us to the issue of output polarity. Suppose
we had to generate active-HIGH outputs. In that case
the output equations for the ROMCS1 signal would be:

POMOZT = /A22 4 JR22 % /R0 # TITT £/R2 = A

f the device has active-LOVW outputs only, this
equation's output polarity needs to be inverted to be
able to fit the device. Using DeMorgan’s thecrem for
Beolean logic we get:

FRECMIST = ARG - AL ¢ AZL + LMD 4 AS v SKW
This equation requires a large number of product terms
(six). Some signals are efficient and use fewer product
termsin their true form, while athers are more efficient in
their inverted form. The device selection issues of
preduct terms and output pelarity also apply to
registered designs.

Timing-Diagram-Based Design
Until now, we have discussed a PLD design using truth

/ROMUSL - /823 ¢ fA22 v /221 ¢ INZT ¢ /RS ¢ ORW tables as the primary design vehicle. In this section we
FADMESRS - SRR T A AT L AR RN will attempt a design using a timing diagram as a design
JRAMCE = /R22 v B3I v ¢R21 < INIT * /A8 vehicle
+/R23 ¢ R332 221 = INIT * /A8 . ‘ )
. ran A1 x THIT = fAg Earlier inthe address decoder design we mentioned the
B e s INIT signal. This INIT signal essentially an initialization
BT ow SLO s al e xSRBS - R N
v ORZE v JRZiow B2l ow INIT w JhE signal for the entire system. The INIT signal is used
. - internally (via feedback) for disabling the chip selects
Figure 9. The Implementation In Boolean [ : L
Equations during initialization. Externally it can be used toinitialize
5-22 PLD Design Methodology



other system signals. This INIT signal is generated from
a RESET switch cennected tothe inputs of the device as
shown in Figure 10.

Most experienced designers understand the tradeoffs
for device selection. They implicitly go through the steps
of design conceptualization and device selection,
explained earlier. They typically draw a block around the
logic being designed, with the previous knowledgethatit
would fit a PLD which has sufficient inputs, outputs, 10s
and product terms

Ve
<
2
RESETT TOF PAL Device
bl Debounce
Circuit
BOTTCM
90002A-9

Figure 10, RESET Switch for System Initialization

To avoid unwanted initialization, the RESET switch
must be debounced. That is, we want the INIT signal to
remain HIGH until the switch actually contacts the
bottom side. Once the bottom side is hit, INIT should be
asserted actve LOW Once asserted, it should stay
LOW and nat change until the top side is hit again. The
timing requirements ofthe debounce circuitry are shown
in Figure 11. Signals TOP and BOTTOM are inputs to
the programmable logic device. These signals are
activated when the RESET switch touches the top and
the bottom contacts, respectively.

We can formulate the equations by looking at the timing
requirements of the debounce circuitry shown in
Figure 11. The idea is to identify the key elements cf this
timing diagram. The arrows in Figure 11 show the critical
events. The first arrow shows the normal state of all the
pins when the RESET switch is not asserted.
Subsequent arrows show each eventin the timing of the
INIT signal, depending upcn the movement cf the
switch.

RESET
Switch

Top

Bottom

Bottom

90002A-10

Figure 11. Timing Diagram for the
Debounce Switch

The logic level of the sighals at each critical event
carries useful logic information for deriving Boolean
equations. This legic information for each event is
converted into direct Boclean equations as shown in
below. Forexample, atinstant 1the INIT signal remains
HIGH as long as the TOP signal remains LOW, this is
converted to INIT = /TOP * BOTTOM.

1. Normal state INIT = /TOP

2 Switch travels THTT - TOF * BOTTIM *
from TOP to BOTTOM  INIT

3. Switch contacts ATITT = /ROTTCM
BOTTOM

4. Switch travels
from BOTTCM to TOP

5 Normal State Again

We can combine the two active-LOW events into one
equation:

JINIT = /IKIT *
BOTTOM *+ TOP

FIAIT = /2OTTCH
- JIRTT * 2QTTIM * TOT

PLD Design Methodology 5-23
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Minimizing, this becomes:

ATHTT = /30TToM
/OINIT 7 TO?

This can also be done by way of a truth table and

Karnaugh map.

Table 3. Truth Table of INIT Logic

TOP BOTTOM INIT- INIT+
1 1 1
1 1 0 0
1 0 1 0
1 0 0 0
0 1 1 1
0 1 o] 1
0 0 1 X
Q 0 0 X

Here TOP or BOTTOM will be LOW if contacted MNote
that both TOP and BOTTOM can not be contacted at the
same time. The truth table of Table 3 yields the
Karnaugh map shown in Figure 12. Grouping the zeros
(because we are using active-LOW outputs) vields the
Boolean equation identical to the one derived frem the
timing diagram.

TOP
/BOTTCM

JRESET 00 01 11 10
ol 1 o | x\ 1
v
1o No ot x /A
]

90002A-11
Figure 12. Karnaugh Map of INIT Signal Legic

There is essentially nc difference between the truth
table and timing diagram technigues for writing Booclean
logic. Also, a careful analysis will indicate that we
implicitly assumed a truth table in the timing diagram
example. Some designers prefer to make a separate
truth table (at least in the first few PLD designs), while
others prefer to design directly from timing diagrams.
While the truth table method allows & more optimal
utilization of product terms, the timing diagram method
is easier tovisualize as it retains the design perspective.
In both cases the logic should be minimized by the
design software to ensure that the design is testable.

Most experienced designers understand the tradeoffs
for device selection. They implicitly go through the steps
of design conceptualization and device selection,
explainedearlier. Theytypically draw a block around the
logic being designed, with the previous knowledge that it
would fit a PLD which has sufficient inputs, outputs, IOs
and product terms.

Simulation

Design simulation is an integral part of the design
process, as shown in Figure 13. The purpose is to
exercise all of the inputs and test the response of
outputs to verify that they will work as desired in the
system. These are essentially test vectors which
designate the state of every input on the device; the
outputs are then checked for an appropriate response.
The simulation test vectors identify any flaws in the
design equations which could affect the lcgical
operation of the devices programmed. Thus, the
simulation vectors serve as a design debugging tocl.

Assemble
Design File

Simulate the
Design with
Simulation Vectors

Fix No
Errors

Yes

Download JEDEC
File to the Device
Programmer

Program PLD Array

Frogram
the PLD

Verify Array

90002A-12

Figure 13. Device Simulation and Programming
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Simulation test vectors will eventually make up part of a
larger set of test vecters called "functional test vectors”.
These functional test vectors are used to exercise a real
device after programming to identify any individual
devices which are defective. Other means of identifying
defective devices, such as signature analysis, are also
available. In this section we will strictly focus on
simulation vectors.

Simulation is included in the design file along with the
logic equations. There is litfle standardization in these

simulation expressions among various PLD design
software packages, although most of them rely on test
vectors to exercise the logic.

The simulation vectors or events can be directly derived
from the truth table and the timing diagram of the design.
The logic level and functions of all signals can be
expanded and rewritten in a test vector form by the
software. For example, the truth table for the address
decoder example discussed earlier can be easily
rewritten as shown in Table 4

Table 4. Truth Table Used to Derive Simulation Vectors

A23

»
o
»

A1 TOP BOTTOM AS

A
3

ROMCS1 ROMCS2 RAMCS INIT

waaslas]|lasfas]loo|loo|lco|o o
cool|loo|lco|loo|-=]|-=|oco|oo
Ao alaala s |00 | =00
[opuary P Y =E=-RE=E=1 =X=] [=X=0 [=K=N [-X-
vmwo|aa|laa|laalaasalaa]ae ala o
meaxx|los|los|loalo=m|lo=|o =

HEXIXXIX X | X XXX ||~
Irr|rrx|jrrx|jrxr|jrxjrxjx x| x
IITIT|TIT|TIT|(TI|TIT|TIT|rIT|TT
ITITI|(rITI|mrIT|rIT|rIT|—IT|jTIT|TT
Irr|TIIT|TIT|TI|TI|TIT|TIIT|ITT

These are essentially the simulation vectors which will
allow us to define the inputs to the device and checkthe
outputs of the device.

The simulator then interprets the design file and
generates the output logic levels and/or waveforms,
which can be checked by the designer.

Once the simulation is complete, the design file can be
assembled to generate the JEDEC file. In the
preceeding discussions we have assumed prior
knowledge of the design file assembly. The procedure
for assembly varies with different software packages.
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Device Programming and Testing

Once the design simulation is completed, the final step
is device programming and testing (Figure 14).
Programmers are available from a variety of vendors. It
is important to note that Advanced Micrae Devices, Inc,
qualifies programmers upon verifying that the
algerithms used by the programmers are correct and
that other basic criteria are met. VWhen purchasing a
pragrammer, check that the programmer is qualified for
the devices you intend tc use

Downlocad JEDEC
File to Device
Programmer

Program
FLD

Performed by
Device
Programmers

Test PLD with
Simulation and
Other Test Vectors

Program Security
Fuse If Desired
| Use on a Board I

Figure 14. Device Programming and Testing

Test
PLD

90002A-13

There are two types of programmers available:
menu-driven or device code based. The menu-driven
programmer directly indicates the part type being
programmed, whereas the latter type requires the user
to enter the device code before programming.

Once the JEDEC fuse file has been downloaded, the
pregrammer can program the device; the PLD is then
ready for use. The programmer also verifies the
connections afterthe programming cycle. Programmers
also provide the capability of reading a previously
pregrammed device and creating duplicates of that
device.

Testing PLDs

The testing of PLDs can be performed by the device
pregrammer or by other test equipment. For a
manufacturing environment, where high vields are
required, device testing is critical. After testing is
complete, the device security bit may be programmed, if
desired, to secure the design from copying.
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STATE MACHINE DESIGN

State Machine Design

e\

INTRODUCTION

State machine designs are widely used for sequential
control logic, which forms the core of many digital sys-
tems. State machines are required in a variety of appli-
cations covering a broad range of performance and
complexity, low-level controls of microprocessor-to-
VLSI-peripheral interfaces, bus arbitration and timing
generation in conventional microprogessors, custom
bit-slice microprocessers, data encryption and decryp-
tion, and transmission protocols are but afew examples

Typically, the details of control logic are the last to be
settled in the design cycle, since they are continuously
affected by changing system requirements and feature
enhancements. Programmable logic is a forgiving solu-
tion for control logic design because it allows easy modi-
fications to be made without disturbing PC board layout.
Its flexibility provides an escape valve that permits de-
sign changes without impacting time-to-market.

A majority of registered PAL device applications are se-
guential control designs where state machine design
technigues are employed. As technology advances,
new high-speed and high-functionality devices are be-
ing introduced which simplify the task of state machine
design. A broad range of different functionality-and-per-
formance solutions are available for state machine de-
sign. In this discussion we will examine the functions
performed by state machines, their implementation on
various devices, and their selection.

What Is a State Machine?

A state machine is adigitaldevice that traverses through
a predetermined sequence of states in an orderly fash-
ion. A state is a set of values measured at different parts
ofthe circuit. A simple state machine can consist of PAL-
device based combinatorial logic, output registers, and
buried (state) registers. The statein such a sequenceris
determined by the values stored in the buried andfor
output registers.

A general form of a state machine can be depicted as a
device shown in Figure 1. In addition tothe device inputs
and outputs, a state machine consists of twe essential
elements: combinatorial logic and memaory (registers)

This is similar to the registered counter designs dis-
cussed previously, which are essentially simple state
machines. The memory is used to store the state of the
machine. The combinatorial logic can be viewed as two
distinct functional blocks: the next state decoder and the
outputdecoder (Figure 2). The next state decoder deter-
mines the next state of the state machine while the out-
putdecoder generates the actual cutputs. Although they
perform two distinct functions, these are usually com-
hined into one combinatorial logic array as in Figure 1.

Combinatorial Logic

Device > gtzg Output
Inputs Decode Decode
State

Outputs

Memory

800054-1

Figure 1. Block Diagram of a Simple State Machine
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Combinatorial Logic
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Combinatorial Logic Qutput .
Decoder .
Inputs (Output .
Next State . Memory - Decode |
Decoder . - .
(Transition M (Registers) . Function)
|__ Function) *
900054-2

Figure 2. State Machine, with Separate Output and Next State Decoders

The basic operation of a state machine is twofold:

1. lttraverses through a sequence of states, where
the next state is determined by next state decoder,
depending upon the present state and input con-
ditions.

2. It provides sequences of output signals based
upch state transitions. The outputs are generated
by the output decoder based upen present state
and input conditions.

Using input signals for deciding the next state is also
known as branching. In additicn to branching, complex
sequencers provide the capability of repeating se-
guences (looping) and subroutines. Thetransitions from
one state to another are called controf sequencing and
the logic required for deciding the next states is called
the transifion function (Figure 2)

The use cf input signals in the decision-making process
for output generation determines the type of a state ma-
chine. There are two widely known types of state ma-
chines: Mealy and Moore (Figure 3). Mcore state
machine outputs are a function of the present state only
Inthe more general Mealy-type state machines, the out-
puts are functicns of both the state and the input signals
The logic required is kncwn as the output function For
either type, the control sequencing depends upon both
states and input signals.

Most practical state machines are synchronous sequen-
tial circuits that rely on clock signals to trigger the state
transitions. A single clock is connected to all of the state
and output edge-triggered flip-flops, which allows a
state change to occur on the rising edge of the clock
Asynchronous state machines are also possible, which
utilize the propagation delay in combinatorial logic for
the memeary function of the state machine. Such ma-
chines are highly susceptible to hazards, hard to design
and are seldom used. In our discussion we will focus
solely on sequential state machines.

State Machine Applications

State machines are used in a number of system centrol
applications. A sampling of a few of the applications,
and how state machines are applied, is described
below.

As sequencers for digital signal precessing (DSP) appli-
cations, state machines offer speed and sufficient
functionality without the cverkill of complex micropro-
cessors. For simple algorithms, such as those involved
in performing a Fast Fourner Transform (FFT), a state
machine can contral the set of vectors that are multiplied
and added inthe process. For complex DSP operations,
a programmable DSP may be better. Onthe other hand,
the programmable DSP solutionis not likely to be asfast
as the dedicated hardware approach.

Considerthe case of a video controller. It generates ad-
dresses for scanning purposes, using counters with
various sequences and lengths. Instead of implement-
ing these as actual counters, the sequences involved
can be “unlocked” and implemented, instead, as state
machine transitions. There Is an advantage beyond
mere economy of parts. A count can be set or initiated,
then left to take care of itself, freeing the microprocessor
for other operations.

In peripheral control the simple state machine approach
can be very efficient. Consider the case cf run-length-
limited {(RLL) code. Both encoding and decoding can be
translated into state machines, which examine the serial
data stream as it is read, and generate the output data.

Industrial control and robotics offer further areas where
simple control functions are reguired. Such tasks as me-
chanical positioning of a robot arm, simple decision
making, and calculation of a trigonometric function, usu-
ally does not reguire the high-power scluticn of micro-
processors with stacks and pointers. Rather, what is
required is a device that is capable of storing a limited
number of states and allows simple branching upen
conditions.
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Figure 3. The Two Standard State Machine Models

Data encryption and decryption present similar prob-
lems tothose encountered in encoding and decoding for
mass media, only here 1t is desirable to make the
scheme not so obvious. A pregrammable state machine
device with a security Bit is ideal for this because mem-
ory is internally programmed and cannot be accessed
by somecne tampering with the system.

Functions Performed

Allthe system design functions perfermed by controllers
can be categorized as one of the following state ma-
chine functions:

Arbitration
Event monitoring

Multiple condition testing

Timing delays
B Control signal generation

Later we will take a design example and illustrate how
these functions can be used when designing a state
machine.

State Machine Theory

Let us take a brief look at the underlying theory for all se-
quential logic systems, the finite state machine (FSM),
cor simply state machine.

Those parts of digital systemswhose outputs depend on
their past inputs as well as their current ones can be
modeled as finite state machines. The “history” of the
machine is summed up in the value of its internal state.
When a new input is presented to the FSM, an output is
generated which depends on this input and the present
state of the FSM, and the machine is caused to move
into new state, referred tc as the next state. This new
state also depends on both the input and present state

The structure of an FSM is shown pictorially in Figure 2

The internal state is stored in a block labeled “memory.”
Asdiscussed earlier, two combinatorial functions are re-
quired: the transition function, which generates the
value of the next state, and the output function, which
generates the state machine output.
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The behavicr of an FSM may be specified in graphical
formas shown in Figure 4. This is called a state diagram,
or state transition diagram. Each bubble represents a
state, and each arrow represents a transition between
states. Inputs that cause the transitions are shown next
to each transition arrow.

Inputs
Outputs
Inputs

Cutputs

Inputs
Qutputs

90005A-4

Figure 4. State Machine Representation

Control sequencing is represented in the state transition
diagram as shown inFigure £ Direct control sequencing
requires an unconditional transition from state A to state
B. Similarly conditional control sequencing shows a
conditional transition from state C to either state D or
state E, depending upon input signal 11

a. Direct Control
Sequencing

b. Conditional Contro|
Sequencing

S0005A-5

Figure 5. Contrel Sequencing

For Moore machines the output generation is repre-
sented by assigning outputs with states (bubbles) as
shown in Figure 6. Similarly, for Mealy machines cendi-
tional output generation is represented by assigning
outputs to transiticns (arrows), as was shown in
Figure 4. More detail on Mealy and Mcore output gen-
eration is given later.

a. Moore Machine b. Mealy Machine

90005A-6

Figure 6. Output Generation

For this notation, there is a specification uncertainty as
towhich signalsare outputs orinputs, asthey both occur
on the drawing next tothe arrow inwhich they are active

Thisis usually resclved by separating the input and out-
put signals names with a line (Figures 4 and €). Scme-
times an auxiliary pin list detailing the logic pelarity and
input or output designations is also used.

State transition diagrams can be made more compact
by writing on the transitions not the input values that
cause the transition, as in Figure 4, but a Boclean ex-
pression defining the input combination or combinations
that cause this transition. For example, in Figure 7,
some transitions have been shown for a machine with
inputs START, X1, and X2. In the transition betwean
states 1 and 2, the inputs X1 and X2 areignored (that is,
they are “den't cares”) and thus do not appear on the
diagram. This saves space and makes the function
more obvious.

90005A-7

Figure 7. State Transition Diagram with
Mnemonics

There can be a problem with this method if one Is care-
less. The statetransitionsin figure 8 show what can hap-
pen. There are three input comkinations, {10, 11, 12, 13) =
{1011}, {1101} and {1111}, which make bcth (10 * /12 +
I3) and {10 * 1 + 10 * 12) true. Since a transiticn to two
next states is impossible, this is an error in the
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specification. It must either be guaranteed that these in-
put combinations never occur, or the transition cendi-
tions must be modified. In this example, changing (10 * 11
+10*12) to {10 * 11 + 10 ™12} * /I3 would solve the problem.

All Cther
Combinations

10" +10712
90005A-8

Figure 8. State Diagram with Conflicting Branch
Conditions

State Transition Table Representation

A second method for state machine representation is
the tabular form known as the state transition table,
which has the format shown in Table 1. Listed along the
top are all the possible input bit combinaticns and inter-
nal states. Each row gives the next state and the next
output; thus, the table specifies the transition and output
functicns. However, this type of table is not suitable for
specifying practical machines in which there is a large
number of inputs, since each input combination defines
a row aof the table. For example, with 10 inputs, 1024
rows would be required!

Table 1. A State Transition Table

Present Outputs
State Inputs Next State Generated
S0 - 8n 10 - Im S0 -8n o0 -Cp
Flowcharts

Ancther popular notation is based on flowcharts. Inthis
notation, states are represented by rectangular boxes,
and alternative state transitions are determined by
strings of diamond-shaped boxes. The elements may
have multiple entry points, but in general have only one
exit. The state name is written as the first entry in the
rectangular state box. Any Moore outputs present are
written next in the state box, with a caret (*) following
those that are unregistered. The state code assignment,
if it is known, is written next to the upper right comer of
the state hox. Decision boxes are diamond or hexagonal
shaped boxes ccntaining either an input signal or alogic
expression. Two exits labeled "0” and *1” lead to either
another decision box, a state box, or a Mealy output

The rounded oval is used for Mealy machine outputs.
Again, a caret follows those outputs that are unregis-
tered. Allthe boxes may needto be expandedto accom-
modate a number of output signals or a larger
expression.

The use of these symbols is shown in Figure 8. Each
path, through the decision boxes from one state to an-
ctherdefines a paricular combination or set of combina-
tions of the input variables. A path does not have to
include all input variables, thus, it accommodates "don't
cares.” These decision trees take more space than the
expressions would, but in many practical cases, state
machine controllers only test a small subset of the input
variahles in each state and the trees are quite manage-
able. Also, the chain of decisions often mirrors the de-
signer's way of thinking ahout the actions of the
controller. It is important to note that these tests are not
performed sequentially inthe FSM. all are performed in
parallel by the FSM's state transition logic.

A benefit of this method of specifying transitions is that
the problem of Figure 8 can be avoided. Such a conflict
would be impessible as one path cannct diverge to de-
fine paths to two states

This flowchart notation can be compacted by allowing
more complex decisions, when there is no danger of
conflicts due to multiple next states being defined, Ex-
pressions can be tested, as shown in Figure 10a, or mul-
tiple branches can extend from a decoding bex, as in
Figure 10b. Inthe secand case, itis convenient to group
the set of binary inputs intc a vector, and branch an dif-
ferent values of this vecter.

The three methods of state machine representation
state diagrams, state tables, and flowcharts

areallequivalentand interchangeable, since they all de-
scribe the same hardware structure. Each style has its
own particular advantages. Although most popular, the
state transition diagrams are more complex for prob-
lems where state transitions depend on many inputs,
since the transition conditions are written directly onthe
transition arrows. Although cumbersome, the state ta-
bles allow the designer tight control over signal logic.
Flowcharts are convenient for small problems where
there are not morethan aboutten statesand where upto
two or three inputs or input expressicns are tested in
each state. For larger problems, they can become
ungainly.

Once a state machine is defined, it must be imple-
mented on a device. Scftware packages are then used
to implement the design on a device. The taskis to con-
vert the state machine description into transition and
cutput functions. Software packages alsc account for
device-specific architectural variations and limitations,
to provide a uniform user interface.
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Some software packages accept all three different state Since the most common of all state machine represen-

machine representations directly as design inputs tations is the state transition diagram representation, we
However, the most prevalent design methodology is to will use it in all subsequent discussions. Transition table
convert the three state machine design representations and flowchart representation implementations will be
to a simple textual representation. Textual representa- very similar

tions are accepted by most software packages although

the syntax varies.

1 NN State Code

state | (x», v~ zn, ) | AsYD y utout
Name X, ¥, Z,..) Sync oore Lutpu

(A% B CA )

Input Cond.
(Expression)

90005A-9
Qutput
Figure 9. Flowchart Notation
State 1 State 1
State 4 State 2 State 3
900054-10
a. Testing Expressions b. Multiway Branch
Figure 10. Using Flowcharts
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State Machine Types: Mealy & Moore

With the state machine representation clarified, we can
now return to the generic sequencer model of Figure 1,
which has been labeled (Figure 11) to showthe present
state (PS), next state (NS), and output (OB, OA). This
will illustrate how Mealy and Moore machines are imple-
mented with most sequencer devices that provide a sin-
gle combinatorial logic array for both next state and
output decode functions. There are four ways of using
the sequencer, two of which implement Mocre ma-
chines and two Mealy First, let us look at the
Mealy forms.

The standard Mealy form is shown in Figure 12, where
the signals are labeled as in Figure 11 to indicate which
registers and outputs are used. The register outputs PS
are fed back into the array and define the present state.
The combinatorial logic implements the transition func-
tion, which produces the next state flip-flop inputs NS,
and the output function, which produces the machine
cutput OB. This is the asynchronous Mealy form.

Combinatorial Logic

, - OB
Device Next
Inputs ex Output NS
— O
! DStatZ Decode Qutputs
ecode . Memory .
- (Registers) M OA
. L]
|_. Present State
90005A-11

Figure 11. Generic Model of an FSM

Output
_ Function - OB
I Transition Next Register oupute
Inputs Function State r1(§rf;$ )
NS neren
2\
Present State
PS
90005A-12
Clock

Figure 12. Asynchronous Mealy Form

An alternative Mealy form is shown in Figure 13. Here
the outputs are passed through an extra output register
(OA) and thus, do not respond immediately to input
changes. This is the synchronous Mealy farm,
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Figure 13. Synchronous Mealy Form
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Figure 14. Asynchronous Moore Form
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Figure 15. Synchronous Moore Form

The standard MooreformisgiveninFigure 14 Here the
outputs OB depend only on the present state PS. This is
the asynchronous Moore form. The synchronous Moore
form is shown in Figure 15. In this case the combinato-
rial logic can be assumed to be the unity function. The
outputs (OB) can be generated directly along with the

present state (PS). Although these forms have been de-
scribed separately, a single sequencer is able to realize
a machine that combines them, provided that the re-
quired paths exist in the device.
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Inthe synchronous Mooreform, the outputs occurin the
state inwhich they are named in the state transition dia-
gram. Similarly, in the asynchronous Mealy and Mcore
forms the outputs occur in the state in which they are
named, although delayed a little by the propagation de-
lay of the output decoder. This is because they are com-
binatorial functions of the state (and inputs in the Mealy
case).

Hawever, the synchronous Mealy machine is different.
Here an output does not appear in the state in which it is
named, since it goes into another register first It ap-
pears when the machine is in the next state, and is thus
delayed by ane clock cycle. The state diagram in Fig-
ure 16 illustrates all the possibilities on a state transition
diagram.

Synchrohous
Mealy Output
Available

11/04

Asynchronous
Mealy Output
Available

Synchronous
Moore Output
Available

Asynchranous S

Moore Output
Available

S0005A-16

Figure 16. State Diagram Labelling for Different
Output Types

As a matter of notation, Moore outputs are often placed
within the state bubble and Mealy outputs are placed
next to the path or arrow that activates them.

The relationship of Mealy and Moore, synchronous and
asynchronous outputs to the states is shown in
Figure 17,

Device Selection Considerations

There are three major criteria for selecting the correct
state machine device for a design:

B Number of inputs/outputs

— WO flexibility
— Number of output registers
B Speed

B Intelligenceffuncticnality

— Number of product terms
— Type of flip-flops
— Number of state registers

Number of I/0s

The number of inputs, outputs and I/O pins determine
the signals that can be sampled or generated by a state
machine.

Timing and Speed

The timing considerations for seguencer design are
similar to those for registered logic design. A system
clock cycle forms the basic kernel for evaluating control
function behavior. For the most part, all input and output
functions are specified in relationship to the positive
edge. Registered outputs are available after a period of
time tco, the clock-to-output propagation delay. Asyn-
chronous outputs require an additional propagation de-
lay (tro) before they are valid.

For the circutt to aperate reliably, all the flip-flop inputs
must be stable at the flip-flop by the minimum set-up
time (ts) of the flip-flops before the next active clock
edge. If one of the inputs changes after this threshold,
then the next state or synchronous output could be
stared incorrectly: the circuit may even malfunction. Ta
avoid this, the clock period (tr) must be greaterthan the
sum of the set-up time of the flip-flops and the clock to
output time {ts + tco). This determines the minimum
clock period and hence the maximum clock frequency.
fMAX, of the circuit. Metastability and erroneous system
cperation may occur if these specifications are violated.

The timing relationships are shown in Figure 18. Ineach
cycle there are two regions: the stable region, when all
signals are steady, and the transition region, when the
machine is changing state and signals are unstable. The
active clock edge causes the flip-flops te load the value
cf the new state that has been set up at their inputs
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Figure 17. State Machine Timing Diagram
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Figure 18. Timing Diagram for Maximum Operating Frequency
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At atime after this, the present state and cutput flip-flop
outputs will start to change teo their new values. After a
time has elapsed, the slowest flip-flop output will be sta-
ble at its new value. Ignering input changes for the mo-
ment, the changes in the state register cause the
combinatorial logic to start generating new values for
the asynchronous outputs and the inputs to the flip-
flops. Ifthe propagation delay of the logic is trp, then the
stable period will start at atime equal to the sum cf the
maximum values of tee, and ten.

Asynchronous Inputs

The timing of the inputs to an asynchronous state ma-
chine is often beyond the control of the designer and
may be random, such as sensor or keyboard inputs, or
they may come from another synchronous system that
has an unrelated clock. In either case no assumptions
can be made about the times when inputs can or cannot

arrive. This fact causes reliability problems that cannct
be completely eliminated, but only reduced to accept-
able levels.

Figure 18 shows two possible transitions from state “81"
(code 00) either back to itself, or to state “52” (code 11).
Which transition is taken depends on input variable "A”
which is asynchronous to the clock The transition func-
tion logic for both state bits B1 and B2 include this input.
The input Acan appearin any part of the cloeck cycle. For
the flip-flops to function correctly, the logicfor B1and B2
must stabilize correctly before the clock The input
should be stable in a window ts (setup time) befare the
clock and ty (hold time) after the clock. If the input
changes within this window, both the flip-flops may not
switch, causing the sequence tojumptostates 01 or 10,
which are both undefined transitions. This type of erro-
neous behavior is called an input race

/

toy ——

B2

\7/—

90005A-18

Figure 19. Asynchronous Input Cascading Race
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A solution to this problem is to change the state assign-
ment so that only one state variable depends on the
asynchronous input. Thus, the 11 code must be
changed to 01 or 10. Now, with only one un-
synchronized flip-flop input, ether the Input occurs In
timeto cause the transition, or it does not, in which case
no transition occurs. In the case of a late input, the ma-
chine will respond to it cne cycle later, provided that the
input is of sufficient duration.

There is still the possibility of an input change violating
the setup time of the internal flip-flop, driving it infc a me-
tastable state. This can produce system failures that can
be minimized, but never eliminated. The same preblem
arises when outputs depend on an asynchronous input.

Very little can be done to handle asynchronous inputs
without severely constraining the design of the state ma-
chine. The only way to have complete freedom in the
use of inputs is to convert them into synchronous inputs
This can be done by allocating a flip-flop to each input as
shown in Figure 20. These synchronizing flip-flops are
clocked by the sequencer clock, and may even be the
sequencer's own internal flip-flops. This method is not
foolproof, but significantly reduces the chance of me-
tastability occurring

Functionality

The functionality of different devices is difficult to com-
pare since different device architectures are available
The number of registers in a device determines the
number of state combinations possible. However, allthe
possible state combinations are not necessarily usable,
since other device constraints may be reached. The
number of registers does give an idea of the functionality
achievable in a device. Cther functionality measures in-
clude the number of product terms and type of flip-flop.
One device may be stronger than another in cne of
these measures, but overall may be less useful due to
other shortcomings. Choosing the best device involves
both skill and experience

In order to give an idea of device functicnality, we will
consider each of the architecture options available to
the designer and evaluate its functionality.

AOC
Cembinatorial
| Input Logic Output | SC
Register . ™ Register [ ™
Fav PaN
State
Register
PaN
Clock |
90005A-20

Figure 20. Input Synchronizing Register

PAL Devices as Sequencers

A vast majority of state machine designs are imple-
mented with PAL devices. Early versions of software re-
quired the user to manually write the sum-of-preducts
Boolean equaticns for using PAL devices. Secend gen-
eration software allows cne to specify the design in
“state machine syntax,” and handles the translation to
sum-of-products logic automatically. PAL devices im-
plement the cutput and transition functicns in sum-of-
products form through a user-programmable ANDarray
and a fixed OR array

PAL devices deliverthe fagtest speed of any sequencer
and are ideally suited for simple control applications
characterized by few input and output signals interact-
ing within a dedicated controller in a sequential manner
The number of flip-flops in a typical PAL device range
from & to 12, which offer potentially more than cne thou-
sand state values. Since some of the flip-flops are used
for outputs, and the number of product terms is limited,
the usable number of states is reduced drastically. Gen-
erally, up to about 35 states can be utilized.
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PAL Device Flip-Flops

PAL device based sequencers implement small state
machine designs, which have a relatively large number
of output transitions. Since the cutput registers change
with most state transitions, they can be used simultane-
ously as state registers, once the state values are care-
fully selected. Most PAL devices are used for small state
machines, and efficiently share the same register for
output and state funchions. High-functionality PAL de-
vice based sequencers provide dedicated buried state
registers when sharing is difficult.

As astate machine traverses from one state to another,
every output either makes a transition (changes logic
level) or holds (stays at the same logic level). Small state
machine designs require relatively more transitions and
fewer holds. As designs get larger, state machines sta-
tistically require relatively fewer transitions and more
holds.

Most PAL devices provide D-type output registers. D-
typeflip-flops use up preduct terms only for active transi-
ticns from logic LOW to HIGH level, and for holds for
logic HIGH level only. J-K, S-R, and T-type flip-flops use
up product terms for both LOVW-to-HIGH and HIGH-to-
LOW!ransitions, but eliminate hold terms. Thus, D-type
flip-flops are more efficient for small state machine de-
signs. Some PAL devices offer the capability of config-
uring the flip-flops as J-K, S-R or T-types, which are
more efficient for large state machine designs since they
require no hold terms.

Many examples of PAL-device-based sequencers can
be found in system time base functions, special count-
ers, interrupt controllers, and certain types of video dis-
play hardware,

PAL devices are produced in a variety of technologies
for multiple applications, and provide a broad range of
speed-power options.
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INTRODUCTION

In the previous section we discussed combinatorial de-
signs, circuits whose outputs are totally independent of
anysystemclock. Inthis section we will discuss sequen-
tial circuits, where outputs store their previous values
untilanew clockis applied. The storage elements which
retain the previous output values are called flip-flops. A
bank of these flip-flops forms a register, although indi-
vidual flip-flops are often called registers.

Before we discuss purely registered designs, let us take
a look at designs which combine both registered and
combinatorial portions. Registered and combinatorial
outputs are often mixed on asingle device. There can be
twodistinct designs, one registered and one combinato-
rial (often glue logic) combined on a single device for
higher integration. There may also be a design require-
ment where registered outputs need to be decoded us-
ing combinatorial logic.

There are a number of devices which provide both regis-
tered and combinatorial outputs. Most devices provide
programmable register bypass, which allows outputs to
be programmed as registered or combinatorial,

In most design software packages, the output registers
are signified by the =" assignment symbol, as opposed
to the "=" sign for a combinatorial output. This helps to
easily identify registers in each equation. In devices
which provide outputs configurable as either registered
or combinatorial, this sign is also used by the software to
configure the outputs.

General Device Selection Considerations

The same set of general device selection considera-
tions discussed in the PLD design methodology section
apply to registered designs. The list of items which must
be considered is repeated in Figure 1 for convenience. A
device can be conveniently selected based upon the
specific input and output requirements.

B Number of product terms
B Output polarity control

Figure 1. General Device Selection Considerations

Maximum Frequency

For registered designs, speed is a parameter which
needs careful consideration. Most combinatorial de-
signs use the propagation delay (teo) for ensuring that
enoughtimeis allowed forthe data from the inputs to ap-
pear at the outputs. In registered designs the effects of
the clock must be taken into account. This is reflected in
the maximum frequency (fuax) parameter. The flexibility
inherent in PLD design provides a choice of configura-
tions from which different fuax parameters can be
calculated.

In the first type of design, the PLD is used for a stand-
alone registered design. In orderto decide the next logic
level of the registers, the present logic level needs to be
available at the inputs of the registers before they are
clocked (Figure 2.) Under these conditions the clock pe-
riod is limited by the internal delay from the flip-flop out-
puts through the internal feedback and logic to the
flip-flops inputs. This fuax is designated “fuex internal” A
simple internal counter is a good example of this type of
design, therefore, this parameter is sometimes
called "fonr.”

CLK

v

A
Logic v] Register

Number of input pins
Number of output pins
Mumber of IO pins

Device speed

Device power requirements
Number of registers

fue Internal (fora) 000481

Figure 2. Internal fuyax
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The second type of system configuration is when a num-
ber of logic devices with registers, including PLDs, are
clocked witha common clock This is probably the most
prevalent configuration. In this case, the registered out-
puts are sent off-chip back to the device inputs orto the
inputs of a second device. The slowest path defining the
period (Figure 3) is the sum of the clock-to-output time
and the input setup time for the external signals (tsttco).
The reciprocal, fuax, is the maximum frequency with ex-
ternal feedback or in conjunction with an equivalent
speed device. This fuax is designated “fuax external”

CLK
~ (Second
E— Chip)
Vv Logic Register r
tz
IL ts + teo —+—.|

funx External: 1/(ts + teo)
90004A-2

Figure 3. External fuax

The third type of design is a simple data path applica-
tion. In this case, input data is presented, to the flip-flop
and clocked; no feedback is employed (Figure 4). In this
case, the period is limited by the sum of data setup time
and data hold time (ts+t4). However, the minimum clock
period (twn + twi) is usually a stricter limit. Thus, the third
fuax designated "fuax no feedback™will be the lesser of 1/
(ts + tu) or 1/ (twn + twa).

CLK

74
p—) Logic :3 Register >
L . J
| ) | 90004A-3

fun No Feedback: 1/(ts + tu) or 1/({twn + tw)
Figure 4. fuax with No Feedback

fuax external and fuax no feedback are calculated pa-
rameters. fuax internal is measured.

Flip-Flop Types
There are four basic types of flip-flops; S-R, J-K, T and

the popular D-type. These flip-flops are described inthe
“PLD Design Basics” section of this data book.

Almost all registered PLDs provide the basic D-type flip-
flops. D-type flip-flops are the simplest to design with
and will be used throughout this section. Some PLDs
provide the capability of configuring output registers as
either D, T, J-K or S-R. Configurable flip-flops in some
cases can reduce the number of product terms required
for certain designs. The effect of the configurable flip-
flops will be discussed wherever relevant.

Synchronous vs. Asynchronous

Registered designs can be easily classified into two
categories; synchronous and asynchronous. In syn-
chronous designs the clock inputs of all the registers are
tiedtogetherto a common clock. With asynchronous de-
signs, the flip-flops’ clock inputs may not be tied to-
gether, and the clocks may be gated or even driven by
other flip-flops. We will first discuss synchronous regis-
tered designs and then asynchronous registered
designs.

Synchronous Registered Designs

Synchronous registered designs are used for two major
functions: data handling and control. Registered syn-
chronous designs for data handling include counters
and shift registers. There are various types of counters.
Some are; binary counters, modulo counters, Johnson
counters, and Gray-code counters. These counters are
differentiated by the sequence of values through which
the counter travels. A binary counter is the simplest form
of a counter, and is used most often for data functions.
Any system requiring a regular count uses a binary
counter. Modulo, Gray-code, and Johnson counters are
also used for control.

All counters are actually subsets of a larger class of digi-
tal designs called state machines. State machines are
discussed in detail in the next chapter of this handbook.

Counters

Counters are the most commonly used sequential cir-
cuits. A set of registers, that cycles through a predeter-
mined, unvarying sequence, is called a counter. A
general model of a synchronous counter is illustrated in
Figure 5. This shows a common clock to all the flip-flops,
whose outputs are fed back to a combinatorial logic ar-
ray called the next-state (count) decoder. The next
count is generated by this logic based upon the present
count and control inputs. Most PLDs use the standard
sum-of-products form of array for this logic.
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The relationship between a four-bit counter and its sig-

nal timing diagram is illustrated in Fig
ers can also be represented by state

ure 6. The count-
diagrams (Figure

7). The state diagrams are bubble-and-arrow diagrams.

Each bubble represents a count value

and each arrow a

transition from one count to the next. More detail on

state diagrams is
chine design. Fo

given in the next chapter on state ma-
r counters, the state diagrams are a

convenient representation tcol and will be used in the
discussion when necessary

Control Inputs —————

CLK
Combinatorial
Logic
N
Next Cutputs

State . L]
(Count) . Flip-Flops .
Decoder s hd

S0004A-4

Figure 5. General

Model of a Counter

X0

~ Uiy
| [

L]

UL

||

mi=

X1
X2
X3
State o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 o 1 2 3
(Court)
S0004A-5
Figure 6. Timing Diagram of a Four-Bit Binary Counter
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Sixteen States Numbered From 0—15

B0004A-6

Figure 7. State Diagram of a Four-Bit Binary Counter

Binary Counters Table 1. The Truth Table for a Four-Bit Binary
: o Counter

Let us examine a four-bit binary counter. The truth table

(also called the transition table) for such a counter is Present State Next State

givenin Table 1. The table lists the next state values of X3 X2 X1 X0 X3 X2 X1 X0

all the cutput registers based upen their present values 0 0 0 0 0 0 0 1
0 0 o 1 0 0 1 0
0 0 1 0 0 0 1 1
0 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0
1 0 0 0 1 0 0 1
1 0 0 1 1 0 1 0
1 0 1 0 1 0 1 1
1 0 1 1 1 1 0 0
1 1 0 0 1 1 0 1
1 1 0 1 1 1 1 0
1 1 1 0 1 1 1 1
1 1 1 1 0 0 0 0

Registered Logic Design 5-43



u AMD

We derive Beolean equations for each bit directly from
the above truth table by collecting all the product terms
where outputs are asserted HIGH (cnes). This yields:

€3 oi= JXE o
+ RLOF
+ £
+ i o*
+ 5 0F
' *
+ *
+ *
X2 - *
+ *
+ *
b *
+ -
+ *
+ *
+ £z ¢
AN = *
+ %
+ *
+ JEIO*
+ R
+ £z
+ ESCH
+ KA
€0 o= *
+ *
+ %
+ *
+ DA
+ ix 07
+ JAcIN
+ L5 0+

These Boolean equations are for devices with active-
HIGH outputs. These equations can be inverted for de-
vices with active LOVV outputs. The Boolean equations
for active-L OvY devices can also be directly derived
from the truth table by collecting all the product terms
where the active-LOW outputs (zeros) are asserted.

Manipulating the equations with Boolean algehra, we
obtain the Boolean logic equations:

X0 - JHU
P
: 2 :
{3
= /A + B):
T
R * N0
HE * 7 RN

These equations could also be obtained from the
Boolean equations developed for an adder in the combi-
natorial design section.

Rewriting the equations for an adder

Z0oo=  AD ra BD - Tin

21 - A1 4+ Bl -: O

where

¢ = AR+ BO o+ (AC 4+ BO) o+ Cin

Xh - A2 + 2. 1

where

¢l = A1 % Bl o+ (&1 + BL) * (A0 * ED)
+ (A1 + B1) ¢ (AL + BU) o+ Cin

L3 o= A2 1 B3 s C2

where

[ + AL - BIZy o+ A1 % BLi
+ * (Bl + B1) %

(AC % BDI
* (A1 1 B1)y *{AC * B

Assuming one of the operands in the adder is the num-
ber itself and the second operand is one (X3-X0 =
A3-AD, B3-B0=0001 and Cin = 0) we get the following
equations for a counter.

w0

Z1

* X = Ka)
the same equations as the ones
derived directly from the truth table. The equations fora
binary counter are very regular. The general equaticn
fer an n-bit binary counter can be directly expressed:

in

i= Ko o4 (¥n-l1F Xn-Z oL .. XO)
For devices with active-LOW outputs, the general
Boolean equations ¢an be derived by inverting both

sides of the equation:

SR - SR os-r (¥m=D% En-no.
These equations represent a binary UP counter. Count-
ing backwards for a DOWWN counter, the Boolean egua-
tions can bte similarly generated, either from the truth
table or from the adder Boolean equations. The general
equation for a DOVWN counter is

L)

Zror= Erorar (¥l S¥n-ZoLo. JEO)
This equation is for active-HIGH outputs. For active-
LOW output devices the Boclean equation for a DOVWN

counter is:

JEr or= JEr v (FEL-1 SEL-Zo0L0 JEO)
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Further control functions can be added to these counter
equations directly either at the truth-table stage orin the
equations. Forexample, a load data function is required
in most counters, This allows registers to be loaded with
a count under the control of anecther input signal
(LOAD). When the LOAD signal is HIGH the counter is
loaded with the input data, and when the LOAD signal is
LOW the counting is resumed.

Binary Counter Device Selection
Considerations

One major device selection consideration is the logic
reguirement

The binary counter Boolean equations make use of ex-
clusive-OR functions in the output. In most of the regis-
tered PLDs, the XOR functions are implemented in their
sum-of-products legic form. This usually requires a
large number of product terms. Most standard PAL de-
vices provide eight product terms per output. However,
forlarger counters, a greater number of productterms is
required.

Some PLDs provide a dedicated XOR gate on the out-
puts. This allows an AND-OR-XOR implementation of
the Boolean logic. and consequently requires fewer
product terms.

Cascading Binary Counters

Situations are occasionally encountered in digital sys-
tem designs where very long counters are required.

Binary counterscan be easily cascaced into two ormore
devices to construct such large counters. The design cf
long counters is very simple. These are designed as
simple binary counters with a count enable control. The
less significant counters generate an extra output signal
at the penultimate count. These signals are ANDed to-
gether to form the count enable signal for the higher-
order counter. For a down counter the reverse scheme
isimplemented.

Cascading counters is a lot easier than cascading ad-
ders because the carry-look-ahead circuitry is not re-
guired. The only thing to remember is that the more
significant counter toggles only when the penultimate
count of all of the less significant counters is reached.

Flip-Flop Selection

Until now, all the designs have been implemented in de-
vices with D-type flip-flops. VWhat happens if the counter
design is implemented in a device that allows both J-K
and T-type registers? The Boclean logic equations for
such a design can be derived from the truth table. This
requires advanced knowledge of the functicnality of the
J-K and T-type registers. For the J-K register the output
is asserted whenthe Jinputgoes HIGH and the output is
unasserted when the K input goes HIGH. Toggle type
registers require the T input to be asserted for every
change in the output level

Table 2. Truth Table for D, J-K and T-Type Flip-Flops

Next State
Present State
X3 X1 X0

X3 X2 X1 X0 o J K T D J K T D J K T D J K T
0 0 0D 0 0 0 00 0 0 0 0 0 0 0 0 1 1 0 1
0o 0 0 1 0 o} 0 D0 0 0 0 0 1 1 0 1 0 0 1 1
0o 0 1 0 0 0 0 0 0 o 0 0 1 0 0 0 1 1 o] 1
0 0 1 1 0 [ 0 0 1 1 0 1 0 o] 1 1 0 0 1 1
o] 1 0 o0 o] 0 0 0 1 0 0 o] 0 0o 0 0 1 1 0 1
0 1 0 1 0 0 00 1 0 0 0 1 1 0 1 0 0 1 1
o] 1 1 0 0 o} 0 0 1 (O] 0 1 0o 0 0 i 1 0 1
0 1 1 1 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 0 o 1 [ 0 0 0 (G 0 0 o0 0 0 1 1 0 1
1 0 0 1 1 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1
1 0 1 0 1 0 00 0 0 0 0 1 0 0 0 1 1 Q 1
1 0 1 1 1 [o} 0 0 1 1 0 1 0 o] 1 1 0 0 1 1
1 1 0D 0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1
1 1 0 1 1 o} 0 0 1 0 0 0 1 1 0 1 0 0 1 1
1 1 1 0 1 0 0 0 1 0 0 0 1 0o 0 0 1 1 o] 1
1 1 1 1 0 [ 1 1 0 0 1 1 0 o] 1 1 0 0 1 1

Registered Logic Design

5445



u AMD

Table 2 shows the truth table for both a J-K and a T-type
register implementation for a binary counter. Deriving
and optimizing the equations from the table, we get the
following results:

z2 T = X1 * X0
Z1-T = ]
X0-T = 1

As we can see from these equations, the number of
product terms used for J-K and T-type implementations
are smaller than the number of product terms required
for a D-type implementation.

Which flip-flop 1s most efficient depends on the relative
number of transitions or holds required. As a counter
traverses from one count (state) to another, every out-
put either makes a “transition” (changes logic level) or

“holds” (stays at the same logic level). Small counters in
general require moretransiticns and fewer holds. Asthe
designs get larger, the higher-crder bits require fewer
transitions and more holds.

D-type flip-flops use up product terms only for active
transitions from logic LOW level to HIGH level, and for
logic HIGH level holdsonly. J-Kand T-typeflip-flops use
up product terms for bath LOVW-to-HIGH and HIGH-to-
LOW transitions, but eliminate hold terms. Generally,
the requirements of transition and hold terms depends
upon the count sequence selection D-type flip-flops are
more efficient for small designs. Conversely J-K and T-
type flip-flops can be more efficient for large designs,
which require more hold terms.

A comparnison of product term requirements of 2-, 3- 4-
and 5-hit binary counters can be representative for cther
types of counters and state machines. Table 3 shows
the transition terms and the hold terms required for
these counters. For a J-K type flip-flop implementation,
after optimizing, total product terms required are 4, 6, 8,
and 10 respectively. The D-type implementation re-
quires 3, 6, 10, and 15 respectively, and is relatively less
efficient for large counters.

Table 3. Product Term Requirements for Configurable Flip-Flops

D Product J-K Preduct T Product
Binary Counter Transitions Helds Terms Terms Terms
2-Bit € 2 3 4 1
3-Bit 14 10 4] 8 1
4-Bit 30 34 10 8 1
5-Bit 82 95 15 10 1

Modulo Counters

The number of unique states a counter traverses is gen-
erally referred 1o as the modulus, A typical n-bit binary
counter has a maximum modulusof 2n. Itis oftenneces-
sary 1o intreduce signal delays into the legic design to
meet timing requirements. This makes it possible to al-
low for bus-skew, access time, or differential propaga-
tion delays between devices along two different signal
paths. A typical example of this is the intreduction of wait
states to allow for access times of different memory ele-
ments. Counters and delay lines are commonly used to
introduse the delay. Counters in PLDs have the added
advantage of programmability to select the required de-
lay. Such applications where precise timing duration
control is required usually use modulo counters with a
non-power-of-two  modulus. Cther applications of
modulo counters include waveform generators and
arbiters.

Table 4. Truth Table for a BCD Counter

Present State Next State
Q3 Q2 Q1 Q0 Q3 Q2 Q1 Q0
0 0 0 0 0->1 0 0 1
0 ] 1 1-»2 0 0 1 0
0 0 1 0 2->3 0 0 1 1
0 0 1 1 3->4 0 1 0 0
0 1 0 0 4->5 0 1 0 1
0 1 o] 1 5->6 0 1 1 0
0 1 1 o} §-»7 0 1 1 1
0 1 1 1 7->8 1 0 0 0
1 0o 0 © 8-»9 1 0 0 1
1 D 0 1 9->0 0 0 0 0
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A good example of a module counter is a BCD counter.
Such a counter is useful in applications where the com-
puter's outputs are generated using a decimal system
While a four-bit binary counter can count to sixteen, the
BCD counter terminates the count at the modulus of 10

Modulo counters can be designed in a variety of ways.
One direct way is to use the truth table to implement a
count to 2 modulus and directly derive the equations
from it. The truth table for a BCD count (from zero to
nine) is shown in Table 4.

MNow let us considerwhat happens ifthe device acciden-
tally powers up in one ¢f the count values from ten to fif-
teen. These are illegal counts (states) and, for a good
design, a mechanism must be built into the equations to
allow it to recover back into a legal state. VWhat we actu-
ally need is to consider the truth table in Table 5in con-
junction with the cne in Table 4 for deriving the Boolean
equations

Table 5. Truth Table for lllegal State Recovery to
Count Zero

Next State
Q3 Q2 Q1 Qo

Present State

Q3 Q2 Q1 Q0

1 0 1 Q 10->0 0 0 0 0
1 0 1 1 11->0 0 0 o 0
1 1 0 0 120 0 o] o 0
1 1 0 1 13-=0 0 0 o 0
1 1 1 0 14->0 0 o] o 0
1 1 1 1 1520 0 0 0 0

A state diagram for the BCD counter is shown in Fig-
ure8. For active-LOW outputs, the Becolean equations
can be derived directly from the truth table and opti-
mized using Karnaugh maps or the software minimizer.

The Boolean equation for Q3 is:

/03 = * AL Y
— Ed 3 ,’[:_‘1 & QO
- * * 01+ Sun
_ * * 01 +* Q0

* 01 % /o0

- * £ 701 ¢ 00
- * ol v /g0
— * * /’QT * QO
* 3 o1+ S0

_ PRCE % 01+ 00
- mor 02 ol Qo
o1 onox /le * Q0

- (DX DN a1 * ’/"C}O
- S I R T ¢

The equation can be reduced to the following

© 0z
/01
* 00
ool
*

[y
S5

Similar Boolean eguations can bhe generated for Q2,
Q12 and QO.

Figure 9 shows the circuit diagram of a loadable dual
BCD counter.

(=]

000000

O0004A-7

Figure 8. State Sequence of a BCD Counter Showing lllegal State Recovery
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CEB
LDBE
Four-Bit Qo
BCD i
Count Qz
— — Q2
00 ———— 2
0| ——————1  nput
0% —————1 Buffers
03
Four-git J—— Q4
BCcD [ 5
Count J—— Q6
CEA — a7
DA ~
Clock |
90004A-8

Figure 9. Circuit of a Dual BCD Counter

Modulo Counter Device Selection
Considerations

We have illustrated a counter that counts from zero to a
fixed modulus. The sametechnique can beappliedfora
counter which counts down from a maximum power-of-
two number to a fixed modulus, or even a counter which
counts from one modulus to ancther. Theimportant con-
siderations will be the number of preduct terms used.

The registered PLDs used for modulo counters are simi-
lar to the cnes selected for other counters. Since the
counts used are binary, devices with J-K, T-type flip-
flops, or XOR gates will help optimize the number of
product terms used. The product term usage also de-
pends upon the modulus selected. Generally, a power-
of two or a multiple-of-two modulus will require fewer
product terms.

Ancther factor for flip-flop selection is the illegal states.
D-type flip-flops are generally better suited for illegal
state recovery than the J-K or T-type flip-flops. This is
because when nc product term is asserted, the D-type
flip-flops reset to zero. Designers using J-K or T-type
flip-flops must design-in illegal state recovery.

Certain devices allow the use of a synchronous RESET
product term for module courters, The idea isto use the
minimal number of product terms to build a binary
counter that counts up to a power-of-two number, How-
ever, this counter is RESET to zero using the synchro-
nous RESET preduct term when the desired modulus is
reached. Itthen begins counting afresh from zero, and
the procedure is repeated. Similar operation canalsobe
achieved with a synchronous PRESET product term for
a down counter.

Using synchronous RESET and PRESET productterms
allows the counter to recover from illegal states. Notice
that the logic product terms in the counter are designed
for a complete binary count. If the counter powers up in
any illegal state (as shown in Figure 10), it will continue
the count until the terminal count and then, return to
zero, where the correct modulo count will begin. This il-
legal state recovery willtake an unpredictable number of
clock cycles, and you may wish to design a more sys-
tematic recovery system

Cascading Module Counters

For large modulo counters, the technique of generating
Boolean equations from the truth tables is very tedious
and time consuming. Ancther appreach for designing
modulo counters is to divide it into two smaller modulo
counters. In addition to simplifying the design, this ap-
proach usually helps optimize the number of product
terms

As an example, a modulo-360 counter can be directly
implemented with nine register bits. However, instead of
implementing this as a straight 9-bit counter, we can im-
plement this as two counters: one four-bit counter
{counting from zereo to 14) and another five-bit counter
(counting from zero to 23). Together, the two counters
count up to 360. The terminal count cutput, MOUT, is
asserted when the count reaches 360, as shown in
Figure 11.

The design requires nine inputs, nine cutputs, cne clock
pin, one LOAD pin. one RESET and one MOUT {maodule
cutput signal) pin. Note that no extra flip-flops or pins
were needed. Obviously, the count values of this
counter are not the same as a straight modulo-3€0
counter. Actually, this is what contributes to the optimi-
zation of the number of product terms used.
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Reset Product

Illegal States
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90004A-9
Figure 10. A BCD Counter Using Synchronous RESET Product Term
Q24 (4) (3) (2) (1) (:3) Q15 (?) (ﬁ) (1) (0
— =
D—’ M_OUT

A (8:4) 3 A (3:0) —S—nl

Load Modulo 24 Modulo 15

RST 5 Bits 4 Bits

CLK P> P>

AmPALZ2V10

90004A-10

Figure 11. A Modulo-360 Counter
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Counters with Encoding

Until now, we have discussed counters that generate bi-
nary output sequences. Most peripherals require a pre-
determined sequence of contrel signals. Custom control
sequencescan be generated by decoding the binary se-
guencewith combinatorial logic. Figure 12 shows a gen-
eral model of a counter with combinatorial output

deceding circuitry. This combinatorial circuit modifies
the counter bits and generates output signals in the
manner required for peripheral timing and control. Since
these circuits require extra combinatorial logic, they are
notvery efficient. They are also more susceptible to haz-
ards and output glitches.

Combinatorial
Logic

Clock ——t
} —
Control o Cutput - Outputs
Inputs =~ "] Next Decoder| =
[ 0 Flig- |* —
M State M Floos |*
L] Decoder L] [

S0004A-11

Figure 12. Counter with an Qutput Decoder

It is possible to have a different output coding for afour-
bit counter, as shown in Table 6. This code, called Gray
code, allows only one cutput bit to toggle for each new
count value. This cede can be easily derived frem a four-
bit binary counter code (also shown in Table €) using an
output decoder.

Table 6. Generating Gray Code froma

We can derive the Boolean equations for the combinato-
rial output deccder from the truth table. The equations

are:

cr: X2
Z1 s+ X1
23 = X1 o+ ¥oO

Binary Code A more efficient and easier technique for generating
K control signals is to implement the decode circuitry be-
B Cod G Cod .
fnary t-ode ray bode fore the registers. This alternative is shown inFigure 13,
A3 X2 X1 X0 Gd G2 G1 GO This essentially generates a non-standard counter with
0 0 0 0 0 0 Q 0 state values that are not a binary progression. It can be
8 g ? 8 8 8 ? 1 considered as a counter where the product terms for a
0 0 i 1 0 0 i 0 binary count and encoding the outputs have been
0o 1 0 0 0 1 1 0 combined,
0 1 0 1 o 1 1 1 ) )
0 1 1 0 0 1 0 1 Many different codes can be generated using such tech-
0 1 1 1 0 1 0 0 niques. Ve will limit ourselves to the ones that are most
1 o 0 0 1 1 0 0 commonly used. Gray-code counters and Johnson
1 0 0 1 1 1 0 1 counters
1 0 1 0 1 1 1 1 '
1 0 1 1 1 1 1 0
1 1 0 0 1 0 1 0
1 1 0 1 1 0 1 1
1 1 1 0 1 0 0 1
1 1 1 1 1 o] 0 0
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Figure 13. Counter with Combined Next State Generation and Output Encoding Circuit

Gray-Code Counters

Gray-code counters are often used in digital designs for
control timing functions. The primary advantage of
Gray-code counters stems from the characteristic that
only one cutput bit changes value for every clock cycle.
These output signals can be easily decoded using a
combinatorial decoder without any risk of hazards.
Gray-code counters are used extensively as system
clocks, since the different output bits provide different
clock pulses, without the risks of hazards. Gray-code is
also used in high-speed data communication applica-
tions, where data is transmitted from one part of the sys-
tem to another, and where the error susceptibility
increases with the number of bit changes between adja-
cent numbers In a sequence. These are also used for
such specialized applications as shaft encoders and
real-time process control.

The implementation of a Gray-code counter is very sim-
ple. Atruth table can be derived from the transition table
as Is done for a binary counter. The Boolean equations
can then be directly derived from the truth table. The
truth table for the Gray-code counter is shown in
Table?.

Table 7. Truth Table for a Four-Bit Gray-Code

Counter
Present State Next State
X3 X2 X1 X0 X3 X2 X1 X0
0 0 o] 0 0 0 o] 1
0 0 0 1 0 0 1 1
0 0 1 1 0 0 1 0
0 0 1 0 0 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 0 1 0 1
0 1 0 1 0 1 0 0
0 1 0 0 1 1 0 0
1 1 0 0 1 1 0 1
1 1 8] 1 1 1 1 1
1 1 1 1 1 1 1 0
1 1 1 0 1 0 1 0
1 0 1 0 1 0 1 1
1 0 1 1 1 0 o] 1
1 0 0 1 1 0 0 0
1 0 0 0 0 0 0 0
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The Boolean logic equations for a Gray-code counter
are:

% JEY w2 o+ /E1 5 /Yo
v XD ¥ ORZ oY /Y15 YO
X2 o+ X2 % /X1 ¢ X0
wooE F¥E % X1 % X0
T -G S WS (s
R £ K1+ X0
T ST £ ¥l o+ X0
S S /Y15 o
%2 i- * 0 x1 o o»
+ # ¥l s
’ * LD S I
+ s © KL
+ * Iy -
+ * Y1 *
’ * S T
+ * oyl o+
Y1 io * © K1
T K1 o»
N S S
I S T
T ¥l »
I s H1 *
T S
oWy s S
FORE JEr o S
/¥ s a1 =
N I Y1 o#
oo L S
I LS I
¢z £ 1L
ooy LS
ok Jyz o+ ¥l %

Johnson Counters

A Johnson counter is part of a family of counters known
as “ring counters.” These counters are used for special
applications where code symmetry is desired. Ring
counters are alse often used for timing purposes, since
all the outputs are essentially a series of pulses. This
code symmetry also allows use of the fewest possible
product terms with a D-type register. Devices that pro-
vide a small amount of logic per cell, can implement
Johnsaon counters very easily.

Johnson counters are also known as circular-shift
counters. The sequence for a five-stage Johnson
counter is shown in Table 8. As can be seen in the truth
table, the counter first fills up with 1's from left to right
and then it fills up with zeros again. Note from the output
sequence that only one of the Johnson counter bits
changes for every clock period, like the Gray-code
counter. One major advantage ofthe Johnson counteris
that it can be readly decoded with small two-input
NAND gates and hence is suitable for high-speed
applications

Note that the five-stage sequence has atable of 10 legal
states and 22 illegal states (Table 9). In general, an n-bit
Johnson counter will praduce a modulus of 2n. Fig-
ure 14 shows the state diagram of the five-bit counter.

Table 8. Five-Bit Johnson Counter Truth Table
Legal States

Present State Next State

Q4 Q3 Q2 o

o]
[=]

Q4 Q3 Q2

v}
=)

0

s LaLs o000
(SR c =X =X =)
(=) <R R =)

cooav1 s 200
[aN N =) PRGNy )
N Y = R o R oY g
s oaLs o000
[P el =X =X =)
(=Y <RGN Yo ¥ =)
OO0 200

The implementation of a Johnson counter Is relatively
straight-forward, and is the same regardless ofthe num-
ber of stages. When D-type flip-flops are used, the Q
cutput of each flip-flop is connected to the D input of the
following stage. The single exception is the Q cutput of
the last stage, which is complemented and connected to
the D input of the first stage.

Table 9. lllegal States for a Five-Bit
Johnson Counter

lllegal States

Present State Next State

Q4 Q3 Q2 Q1 Qo Q4 Q3 Q2

2]
=]

N = = Y el = R e R e R = N =l = N =]

NN e X =Y s N =R =Y o ) - RN N o § o = N =)
20002222000 22200002220
0O T0 2+ 2T00 2202002 200200
= o = I = I o I o Y o R = I = X = Y = )
OCDO0O00ODO00O0OO00ODOOD00
CODOODO0ODOOCODOO00ODOOOD
COO0ODDODOCCOOCOOLODODDODO
CCO00O0O0ODOO0COOO00ODDO 0D
CO0OO0ODOODODCOoCOOOODODOODO DO
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Figure 14. State Diagram of a Five-Bit Johnson
Counter

Cnedisadvantage of the counter isthe number of invalid
(or illegal) states. The invalid states increase exponen-
tially with the length of the counter. The bigger the
counter becomes, the greater are its chances of enter-
ing an illegal state. Johnson counters are very suscepti-
bletoillegal states, and can“hang up” very easily. Noise
or improper use can cause this counter to end up in an
illegal state. Therefore, a design with illegal state recov-
ery circuitry is always recommended

Figure 15 shows a nine-bit Johnson counter that can be
derived by directly extending the design of a five-bit
Johnson counter.

Shift Registers

A Shift Register is a special digital circuit often usedas a
primary building block in digital computer systems. It is
closely related to a ring counter. Its fundamental usage
is for temporary data storage and bit-wise data manipu-
lation for advanced arithmetic and multiplication opera-
ticns. Shit registers are also frequently used in
communications, for converting parallel byte-wide data
from the microprocessor to a serial data bit-stream for
transmission. Shift registers are also used in graphics
systems for serializing parallel data for use by the dis-
play monitor. A number of examples of video shift regis-
ters are included in the graphics section.

The fundamental purpose of a shift register (Figure 16)
is to shift data from one flip-flop to another. There are
several types of shift registers. They are classified by
the way in which incoming data is received (parallel or
serial), and how outgoing data is transmitted (parallel or
serial).

In the following example, we will discuss a simple uni-
versal shifter that provides both serial and parallel input
and output functicns. Depending upon the contral sig-
nals |0 and I1, the data is shifted from one flip-flop to an-
cther in the left or the right direction. These inputs also
control when the new parallel data is loaded onto the
registers. When shifting left or right, serial data can be
received and transmitted on serial pins LIRO and RILO.
Since the flip-flop cutputs appear on the output pins at
all times, the parallel output data is always available.
The truth table is shown in Table 10

The Beolean logic equations can be directly derived
from the truth table, and are shown Figure 17.

Shift registers can be modified to suit various system de-
sign requirements. This universal shift register can be
used for serial infserial out, parallel in/parallel out, serial
in/parallel out and parallel infserial out functions.

I--DQ—'D Q™D Q™D a™

P > > 4 > P> P> 4
Q
CLK . . > ' . :
90004A-14
Figure 15. Block Diagram of a Nine-Bit Johnson Counter
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Control
Signals

Left Signal Data
In and Out (LIRO)

Parallel Data In
DO D1 D2 D3 D4 D% D6 D7

Pl iy

Shift Register

EREERERER

Q0 Q1 Q2 Q3 Q4 @5 Q6 Q7

Parallel Data Out

Clock

Right Serial Data
Qutand In (RILO)

90004A-15
Figure 16. A Shift Register Block Diagram
Table 10. The Truth Table for a Universal Shift Register
Q7 Q6 Q5 Q4 Q3 Q2 Qi Qo il 10
Q7 (&5 Q5 Q4 Q3 Q2 Qi1 Qo o 0 ;Retain Data
RILO Q7 Q6 Q5 Q4 o] Q2 at 0 1 ;Bhift Right
Q6 Q5 Q4 Q3 Q2 a3 Qo LIRO 1 0 ;Shift Left
o7 D6 D5 D4 D3 D2 D1 Do 1 1 ‘Load Data
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Equations
/Q0 =
+
HE 4
+
/o1 =
+
T+
+
/92 =
+
T+
+
/o3 =
+
HE 4
+
/o4 :=
+
HE 4
+
/05 =
+
b 4
+
/6 :=
+
T+
+
/Q7 =
+
HE 4
+

JI1%/10%/Q0
JI1*T0%Q1
I11%/10*/LIRO
I1*I0%/D0
JI1%/T0% /01
JI1*To%/Q2
I1#%/10%/Q0
I1+10%/D1
JI1%/10%/Q2
JI1*T0%/03
I1%/10*/Q1
I1#I0%/D2
JI1%/10%/Q3
JI1*I0%/Q4
I1%/T0% /02
I11%10%/D3
JI1%/10%/04
JI1*10%/Q5
I11%/10%/03
I11*10%/D4
JI1%/T0% /05
JI1* 10*/Q6
I1%/10%/04
I1* T0*/D5
JI1%/10*/Q6
JI1*Tax/Q7
I1+/10%/Q5
I1+10+/D6
JI1%/10%/Q7
JI1%10%/RILO
I1+/10%/Q6
I1#10%/D7
/LIRO = /Q0

LIRO.TRST = /I1*1I0

/RILO = /Q7

RILO.TRST = I1*/I0

sHOLD QO
;SHIFT RIGHT
;2HIFT LEFT
;LOAD DO

JHOLD Q1
;8HIFT RIGHT
;SHIFT LEFT
;LOAD D1

JHOLD Q2
;SHIFT RIGHT
;SHIFT LEFT
;LOAD D2

;JHOLD Q32
;2HIFT RIGHT
;SHIFT LEFT
;LOAD D2

JHOLD Q4
;SHIFT RIGHT
;2HIFT LEFT
;LOAD D4

JHOLD Q5
;SHIFT RIGHT
;SHIFT LEFT
;LOAD D5

JHOLD Q6
;SHIFT RIGHT
;SHIFT LEFT
;LOAD D6

JHOLD Q7
;3HIFT RIGHT
;SHIFT LEFT
;LOAD D7

;LEFT IN RIGHT OUT

;RIGHT IN LEFT OUT

Figure 17. Boolean Logic Equations for an Octal Shift Register
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Barrel Shifters

In most data processing systems, some form of data
shifting or retation is necessary. Intypical computer sys-
tems, the shifter is located at the ocutput of the ALU, and
usually requires a single-cycle shift and add function
(Figure 18). For such applications asfloating-point arith-
metic cr string manipulation, ordinary shift registers are
inefficient, since they require n clock cycles for an
n-bit shift

Input Data Bus

i

Register
File

<

Shift .
Distance > Shifter
CLK—— Register
OE

< )

Qutput Data Bus
90004A-16

Figure 18. Typical ALU Architecture

A specialized shift register, called a “barrel shifter,” is
used to shift (or rotate) data by any number of bits in a
single clock cycle. The name "barrel shifter” is used be-
cause of the circular nature of the shift cperation. The
storage registers on the cutput of the shifter are used in
this architecture to pipeline the data operation, increas-
ing throughput. Thethree-state buffer on the output reg-
isters is also useful for providing an interface to the
databus.

The design of a barrel shifter proceeds inthe same man-
ner as a regular shift register. The truth table is drawn,

and the Boolean equations are then written based upon
the truth tables. An eight-bit barrel shifter requires at
least eight data inputs, eight registered data outputs,
three control lines to specify the shift distance, a clock
input and an output enable that controls the three-state
buffer on the register output.

Figure 19 shows the block diagram for an eight-bit regis-
tered barrel shifter, while Table 11 shows the truth table.
The registered barrel shifter requires a total of 14 inputs
and 8 outputs

D7 D6 D5 D4 D3 D2 D1 DO

bbbl

50— fe— RST
g; * Barrel Shifter
CLK —= Po— OF
Q7 06 Q5 Q4 Q3 Q2 Q1 QO
90004A-17

Figure 19. Block Diagram of an Eight-Bit Barrel
Shifter

Table 11. Truth Table for an Eight-Bit Barrel
Shifter

2 S1 S0 Q7 Q8 Q5 Q4 Q3 Q2 Q1 Qo
0 0 0 | D7 D6 D5 D4 D3 D2 D1 DO
0 0 1 D6 D4 D4 D3 D2 D1 DO D7
0 1 0 |DE D4 D3 D2 D1 DO DY D&
0 1 1 D4 D3 D2 D1 DO D7 D6 D5
1 0 0 | D2 D2 D1 DO D7 D& D5 D4
1 0 1 D2 D1 DO D7 D6 D5 D4 D3
1 1 0 |D1 DO D7 D& D5 D4 D3 D2
1 1 1 DO D7 D8 D5 D4 D3 D2 D1

Gray-Code, Johnson Counter and Shift
Register Device Selection Considerations

Gray-code counters, Johnson counters and shift regis-
ters are not very logic-intensive; the number of product
terms required is minimal. The D-type flig-flops provide
the most efficient implementations, allowing these de-
signs to be easily implemented in most PAL devices

Since Gray-code counters are often used as system
clocks, very high speed PAL devices providethe highest
resolution clocks,

Barrel shifters are very logic-intensive and require many
productterms, since data from allthe inputs needstobe
accessible at any output. Registered PLDs with a large
number of product terms are ideal for barrel shifters.
Large barrel shifters can also be partitioned into a num-
ber of PLDs.
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Asynchronous Registered Designs

Until now, we have discussed strictly synchronous reg-
istered designs, where a common system clockis used.
In asynchronous registered designs, a commaon clockis
not used. The register clock may he generated by the
output of another register, or by a logical combination of
various other signals. Such designs are usually slow for
such applications as timing generation. because when
the output of one register is used to clock anather, multi-
ple delays are encountered before all the register out-
puts stahilize. On the other hand, designs can be very
fast for asynchronous applications such as bus arbitra-
ticn and control, where a fast response to a bus signal
can be provided without waiting for a commen sys-
tem clock.

Although asynchronous designs are easier to visualize
they present larger problems in implementation.

Combinatarial hazard conditions can cause false clock-
ing of registers, destroying the logic intended by the de-
signer. The designer also needs to worry about race
conditions when clocking a number of register simulta-
neously. Careful design analysis is strongly recom-
mended before implementing any asynchronous
design

Ripple counters are probably the easiest examples of
such asynchronous designs. Figure 31 shows the logic
diagram of a five-bit binary ripple counter. These count-
ers clearly have the advantage of design simplicity. The
output from one stage is fed as the clock to the next
stage. However, this results in a slower counting rate,
since the clock signals need to propagate through all
five registers before the next count is reached.

RESET CK SET
F—————————
|
| Ll || | 1] |
: RDY S RCY S RDY S RDY S RDY S
|
: @ Q @ a @ a a aq a a
|
|
: r ]
T A e 3 | Q2 ot Qo
S G i J
Extra Circuit Required 90004A-18

For Modulo 20 Counter

Figure 20. A Five-Bit Ripple Counter

Figure 20 shows the implementation of a module-20
counter that is RESET when output bits Q4 and Q2 are
both HIGH Since the RESET is implemented with a
product term, the extra AND gate shown can be imple-
mented directly within the PAL device.

Asynchronous Designs Device Selection
Considerations

The device selection for asynchronous designs is easy.
As the clock signals require logic, cnly PLDs that allow
implementations of Boolean logic on the clock signals
are useful.
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OTHER APPLICATIONS OF REGISTERED
PLDs

Registered PLDs are used for a number of miscellane-
ous applications that are not covered by the synchro-
nous and asynchronous design applications discussed
up to now. One such application is as a frequency
divider.

B Frequency dividers
B Addressable Registers

Frequency Dividers

Standard synchronous counters provide the basic capa-
bility of dividing an input frequency. A singleregister ofa
PAL device will let us divide by two.

If we stack these registers, a binary counter provides
symmetrical division by 2, 4, 8, 16, etc. This divider has
been a standard for years, and the PAL device has al-
ways been on excellent choice for such applications.

One unique application of PAL devices is for dividing in-
put frequencies by odd numbers. This has been done
historically by designing a counter that cycles an odd
number modulo, and decoding the specific states of the
counter. The disadvantage of this approach is that the
output is not symmetrical and the duty cycle is not 50%

Let us examine a simple divide-by-five counter. This
counter can he implemented using three flip-flops that
start at zero and reset at four, resulting in a five-state
counter. Table 12 shows the outputs of the three individ-
ual flip-flops.

Table 12. Truth Table for a Five-Bit Counter

Present State Next State
Q2 Q1 Qo] Q2 Q1 Qo

0 1 State zero to one
1 o] State one to two.
1 1 State two to three.
0 o] State three to four.
0 0  State fourto zero.

0000
o=+ 200
O=C =0
C-0C0DOD

The Boolean equations are:

The waveforms for this divider are shown in Figure 21.
Notice that the Q2 output goes HIGH for cne state and
that this output is onefifth of the input frequency, but it is
a 20% duty cycle. Q1 is active for two states; it provides
the same frequency, but with a 40% duty cycle. If we
want a 50% duty cycle, we are going to have to divide a
state in half.

To provide the 50% duty cycle, the two edges should be
evenly spaced in the count sequence, cne edge In the
middle cf state two and cne at the beginning of state
zero. The first edge can be formed by logically "ANDing"
state 2 with the falling edge of the clock The second
edge can be formed by decoding state zero.

=/cloce * /00 = Q01700
;edge belwesan
;states two and
jtnrae

aden

#7001 %07 edge &t state

;oArs

The logical “OR” of these two equaticns will provide the
needed rising edges. Ta provide a clean output, this sig-
nal should clock another autput register.

The next step in the design is to pick the appropriate
PAL device to fit this design. Our biggest concern is that
we need the capability of clocking the counter at one
speed and the output flip-flop at another. To do this, we
cannot use a PAL device that has a dedicated clock pin;
we need an architecture that allows programmable
clocks.

The clock signal requires two product terms (one for
each edge). Another technigue is to use the independ-
entasynchronous SET and asynchronous RESET prod-
uct terms of the output register. A HIGH on the SET
product term asserts the register cutput, and a HIGH on
the RESET product term unasserts the register output
Due to the asynchronous nature of the product terms
some adjustment in timing is required. The SET product
term is asserted when in state 0 (Q2=0, Q1=0 and
Q0=0), and the RESET preduct term is asserted when
between states two and three.

OUTPUT.SET - Jelook % /02 * 1 % OO0
W= 02 * ol LD JMER bit jEeT ber’ =en
o1 = /01 * o0 + 01 /00 jelalas 2 05 2
S0 a= S02 * /00 ;LSE bit SUTRUT.RESET - Q2 #7071 % Q0
jreset at
;stats zero
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Figure 21. Waveform for a Frequency Divider
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Addressable Registers

Addressable registers are commonly-used MSI func-
tions, often implemented in PAL devices. Addressable

registers are used as building blocks for digital comput-

ers. Depending upon the address input cne of the many
flip-flops in the register retain their previous values

Registered Logic Design
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EXAMPLE EXECUTION OF PALASM

Copyright /81991 Advanced flicro Devices, inc.
fikl frightsrreseryeds

Flease, vlew FEADME.DOC for PALASM update Information.

Press any key to continue . . .

Welcome to the machine....

PALASH4 version Market Release 1.5
EDIT RUN VIEW DOWNLOAD DOCUMENTAT ION <F1> for Help

Begin new design
Retrieve existing design
Merge design files
Change directory

Delete specified files

Uorking environment
—| Compilation options

Simulation options
IMULATION OPTIONS
| Use auxiliary simulation file: N ||

Design Information
Cur.Directory: Z:\Neilb

Input Format :@ Text

De=zign File : testl.pds

Device Hame : PALZZU10

Enter Y-N, <F10> form ok, <Esc> abort I

Setting “Use auxiliary simulation file” to ‘N’ directs PALASM to use the simulation data in your .PDS file.




PALASM4 version Market Release 1.5
EDIT RUN UIEW  DOWNLODAD DOCUMENTAT ION <F1> for Help

Retrieve existing design
Merge design files
Change directory

Delete specified files
Set wup...

Go to system

Quit

Deszign Information
Cur.Directory: Z:“\MNeilB

Input Format @ Text

Design File : TermTest.pds
Device Name : PALCEZZU10

If you want to start a new design you can do so from inside PALASM. | use an external text editor (notepad++) to
edit my .PDS files so | don’t typically use this option.

PALASM4 version Market Release 1.5
EDIT RUN VIEW DOWNLDAD DOCUMENTATION {F1> for Help

Begin new design

Input format: Text
File name:

Go to system
Quit

Design Information
Cur .Directory: Z2:%NeilB

Input Format : Text

Design File : testl.pds

Device Hame :@ PALZZU10

Enter file name, <tls+> nove cursor, <F10> form ok, <Esc> abort

Using the .PDS file edited in an external text editor.



PALASH4 version Market Release 1.5
FILE EDIT UIEW DOWNLOAD DOCUMENTATION <F1> for Help

Simulation
Both
Other operations...

Design Information
Cur.Directory: Z:“MeilB

Input Format : Text

Design File : testl.pds

Device Name : PALZ22U10

<Enter> or <F10> select, <Home,End,tl2<> mouve cursor, <Esc?> exit

Compiling the .PDS file

PALASM4 version Market Release 1.5
FILE EDIT UIEW  DOWNLODAD DOCUMENTATION <F1> for Help

COMPILATION OPTIONS

Log file name:
Run mode: Manual
Process from
Format: Text File: testl.pds

Check symtax: Merge mixed mode:
Expand Boolean: Minimize Boolean:
Expand state: Azsemble:

Design Information
Cur.Directory: Z:\NeilB

Input Format : Text

Design File : testl.pds

Device Name : PALZZV10

Enter file name, <ftle+<> move cursor, <F10> form ok, <Esc> abort

Notice the settings for the compile. You will typically need to turn “Minimize Boolean” on.




PALASM4 version Market Release 1.5
| FILE EDIT UIEW DOWNLOAD DOCUMENTAT ION <F1> for Help |
#» MINIMIZE +» ERROR count: @ WARNING count: 0O

PALASM4 PAL ASSEMBLER - MARKET RELEASE 1.5a (B-20-92)
(C) - COPYRIGHT ADVANCED MICRO DEVICES INC., 1992

FILE te=stl.pds
TITLE Example of simple logic statements
Equation being processed for output ==>> AND_OUT

Equation being processed for ouwtput ==>> ~0R_OUT
Equation being processed for ouwtput ==3>> X0OR_OUT
Equation being processed for ouwtput ==>> ANOT_OUT
Equation being processed for output ==>> BHNOT_OUT
The fuse plot is stored in ===>testl.XPT

The JEDEC is stored in ===>testl.JED

“# PAL ASSEMBLER 2 Maximum memory allocated was: 10618 bytes.

## PAL ASSEMBLER 2 File Processed Successfully. File: testl.pds.

<11,Pglp,Pgln,Home ,End> scroll, <F3> Help-errors,<Esc> exit. File=TermTest.log

It compiled!

PALASM4 version Market Release 1.5
FILE EDIT UTEHW DOWNLOAD DOCUMENTAT ION <F1> for Help

Compilation

Both
Other operations...

Design Information
Cur.Directory: Z:\NeilB

Input Format :@ Text

De=zign File : testl.pds

Device Name : PALZZV10

<Enter> or <F10> select, <Home,End,tls<> move cursor, <Esc> exit

Running a simulation of the design.




PALASM4 version Market Release 1.5
FILE EDIT UIEW DOWNLDAD DOCUMENTATION <F1> for Help

Simple logic example

TRACE_ON
SETF

SETF

SETF

SETF

SETF
TRACE_OFF

END OF SIMULATION
Simulation results (history) are in ===> testl.HST
dimulation results (trace) are in ===> testl.TRF
Merged results (JEDEC) are in ===> testl.JDC
#« PLDSIM 2 Maximum memory allocated wa=s: 15418 bytes.

## PLDSIM xx File Processed Successfully. File: testl.pds.

<tl,PgUp,PgDn,Home,End> =croll,<F3> Help-errors,{Esc> exit. File=te=stl.log

The simulation run has completed.

Note that if you get error ‘D10003’ one way | have found to resolve it is to turn “Minimize Boolean” off; recompile
your project; turn “Minimize Boolean” back on; recompile your design then run the simulation



The .TRF file has the results of the simulation run. You will need to review the file to determine if the simulation
results match your design goals.

PALASM4  PLDSIM - MARKET RELEASE 1.5 (7-10-92)
(C) - COPYRIGHT ADVANCED MICRO DEVICES INC., 1992
PALASM SIMULATION SELECTIVE TRACE LISTING

Title
Pattern
Revision
PAL22V10
Page - 1

A_IN
B_IN
AND_OUT
OR_OUT
XOR_OUT
ANOT_OUT

BNOT_OUT

: Simple logic example Author : Neil Breeden
: TEST1.PDS Company : N8VEM
: 0 Date : 05/30/14

99999
LLHHL

LHLHL
LLLHL
LHHHL
LHHLL
HHLLH
HLHLH

| can see that AND_OUT (highlighted in yellow) is only high when A_In and B_In are high so | know the equation
for AND_Out is working as expected.

The files produced by PALSAM for our example above.

TEST1.HST
TEST1.JED
TEST1.LOG
testl.pds
TEST1.TRF
TEST1.XPT

Complete trace log; includes all pins

The JEDEC file your device programmer will use
Compiler log

Our design file

Trace log for the pins defined in TRACE_ON

Fuse map dump file



Version History:
V1.5 - Initial Release

V1.6 — Addition content and editiing






